Skip to main content
Log in

Significant microsynteny with new evolutionary highlights is detected between Arabidopsis and legume model plants despite the lack of macrosynteny

  • Original Paper
  • Published:
Molecular Genetics and Genomics Aims and scope Submit manuscript

Abstract

The increased amount of data produced by large genome sequencing projects allows scientists to carry out important syntenic studies to a great extent. Detailed genetic maps and entirely or partially sequenced genomes are compared, and macro- and microsyntenic relations can be determined for different species. In our study, the syntenic relationships between key legume plants and two model plants, Arabidopsis thaliana and Populus trichocarpa were investigated. The comparison of the map position of 172 gene-based Medicago sativa markers to the organization of homologous A. thaliana genes could not identify any sign of macrosynteny between the two genomes. A 276 kb long section of chromosome 5 of the model legume Medicago truncatula was used to investigate potential microsynteny with the other legume Lotus japonicus, as well as with Arabidopsis and Populus. Besides the overall correlation found between the legume plants, the comparison revealed several microsyntenic regions in the two more distant plants with significant resemblance. Despite the large phylogenetic distance, clear microsyntenic regions between Medicago and Arabidopsis or Populus were detected unraveling new intragenomic evolutionary relations in Arabidopsis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Barker DG, Bianchi S, London F, Datee Y, Duc G, Essad S, Flament P, Gallusci P, Geiner G, Guy P (1990) Medicago truncatula, a model plant for studying the molecular genetics of the Rhizobium-legume symbiosis. Plant Mol Biol 8:40–49

    CAS  Google Scholar 

  • Benko-Iseppon AM, Winter P, Huettel B, Staginnus C, Muehlbauer FJ, Kahl G (2003) Molecular markers closely linked to fusarium resistance genes in chickpea show significant alignments to pathogenesis-related genes located on Arabidopsis chromosomes 1 and 5. Theor Appl Genet 107:379–386

    Article  PubMed  CAS  Google Scholar 

  • Choi HK, Kim D, Uhm T, Limpens E, Lim H, Mun J, Kaló P, Penmetsa RV, Seres A, Kulikova O, Roe BA, Bisseling T, Kiss GB, Cook DR (2004) A sequence-based genetic map of Medicago truncatula and comparison of marker co-linearity with Medicago sativa. Genetics 166:1463–1502

    Article  PubMed  CAS  Google Scholar 

  • Cook DR (1999) Medicago truncatula: a model in the making!. Curr Opin Plant Biol 2:301–304

    Article  PubMed  CAS  Google Scholar 

  • Doyle JJ, Luckow MA (2003) The rest of the iceberg Legume diversity and evolution in a phylogenetic context. Plant Physiol 13:900–910

    Article  CAS  Google Scholar 

  • Endre G, Kaló P, Kevei Z, Kiss P, Mihacea S, Szakál B, Kereszt A, Kiss GB (2002a) Genetic mapping of the non-nodulation phenotype of the mutant MN-1008 in tetraploid alfalfa (Medicago sativa). Mol Genet Genomics 266:1012–1019

    Article  PubMed  CAS  Google Scholar 

  • Endre G, Kereszt A, Kevei Z, Mihacea S, Kaló P, Kiss GB (2002b) A receptor kinase gene regulating symbiotic nodule development. Nature 417:962–966

    Article  PubMed  CAS  Google Scholar 

  • Gilpin BJ, McCallum JA, Frew TJ, Timmerman-Vaughan GM (1998) A linkage map of the pea (Pisum sativum L) genome containing cloned sequences of known function and expressed sequence tags (ESTs). Theor Appl Genet 95:1289–1299

    Google Scholar 

  • Grant D, Cregan P, Shoemaker RC (2000) Genome organization in dicots: genome duplication in Arabidopsis and synteny between soybean and Arabidopsis. Proc Natl Acad Sci USA 97:4168–4173

    Article  PubMed  CAS  Google Scholar 

  • Gualtieri G, Kulikova O, Limpens E, Kim DJ, Cook DR, Bisselin T, Geurts R (2002) Microsynteny between pea and Medicago truncatula in the SYM2 region. Plant Mol Biol 50:225–235

    Article  PubMed  CAS  Google Scholar 

  • Jiang Q, Gresshoff PM (1997) Classical and molecular genetics of the model legume Lotus japonicus. Mol Plant Microbe Interact 10:59–68

    Article  PubMed  CAS  Google Scholar 

  • Kaló P, Endre G, Zimányi L, Csanádi G, Kiss GB (2000) Construction of an improved linkage map of diploid alfalfa (Medicago sativa). Theor Appl Genet 100:641–657

    Article  Google Scholar 

  • Kaló P, Seres A, Taylor SA, Jakab J, Kevei Z, Kereszt A, Endre G, Ellis TH, Kiss GB (2004) Comparative mapping between Medicago sativa and Pisum sativum. Mol Genet Genomics 272:235–246

    Article  PubMed  CAS  Google Scholar 

  • Keogh RS, Seoighe C, Wolfe KH (1998) Evolution of gene order and chromosome number in Saccharomyces, Kluyveromyces and related fungi. Yeast 14:443–457

    Article  PubMed  CAS  Google Scholar 

  • Kiss GB, Csanádi G, Kálmán K, Kaló P, Ökrész L (1993) Construction of a basic genetic map for alfalfa using RFLP, RAPD, isozyme and morphological markers. Mol Gen Genet 238:129–137

    PubMed  CAS  Google Scholar 

  • Kiss GB, Kereszt A, Kiss P, Endre G (1998) Colormapping: a non-mathematical procedure for genetic mapping. Acta Biol Hun 49:125–142

    CAS  Google Scholar 

  • Ku HM, Vision T, Liu J, Tanksley SD (2000) Comparing sequenced segments of the tomato and Arabidopsis genomes: large-scale duplication followed by selective gene loss creates a network of synteny. Proc Natl Acad Sci USA 97:9121–9126

    Article  PubMed  CAS  Google Scholar 

  • Kumar S, Tamura K, Nei M (2004) MEGA3: Integrated software for Molecular Evolutionary Genetics Analysis and sequence alignment. Brief Bioinform 5:150–163

    Article  PubMed  CAS  Google Scholar 

  • Livingstone KD, Lackney VK, Blauth JR, van Wijk R, Jahn MK (1999) Genome mapping in capsicum and the evolution of genome structure in the Solanaceae. Genetics 152:1183–1202

    PubMed  CAS  Google Scholar 

  • Mayer K, Schuller C, Wambutt R, Murphy G, Volckaert G, Pohl T, Dusterhoft A, Stiekema W, Entian KD, Terryn N, Harris B, Ansorge W, Brandt P, Grivell L, Rieger M, Weichselgartner M, de Simone V, Obermaier B, Mache R, Muller M, Kreis M, Delseny M, Puigdomenech P, Watson M, McCombie WR, et al. (1999) Sequence and analysis of chromosome 4 of the plant Arabidopsis thaliana. Nature 402:769–777

    Article  PubMed  CAS  Google Scholar 

  • Menancio-Hautea D, Fatokun CA, Kumar L, Danesh D, Young ND (1993) Comparative genome analysis of mungbean (Vigna radiata L. Wilczek) and cowpea (V. unguiculata L. Walpers) using RFLP mapping data. Theor Appl Genet 98:797–810

    Article  Google Scholar 

  • Nakamura Y, Kaneko T, Asamizu E, Kato T, Sato S, Tabata S (2002) Structural analysis of a Lotus japonicus genome II. Sequence features and mapping of sixty-five TAC clones which cover the 6.5-Mb regions of the genome. DNA Res 9:63–70

    Article  PubMed  CAS  Google Scholar 

  • Neumann P, Pozarkova D, Macas J (2003) Highly abundant pea LTR retrotransposon Ogre is constitutively transcribed and partially spliced. Plant Mol Biol 53:399–410

    Article  PubMed  CAS  Google Scholar 

  • Paterson AH, Bowers JE, Burow MD, Draye X, Elsik CG, Jiang CX, Katsar CS, Lan TH, Lin YR, Ming R, Wright RJ (2000) Comparative genomics of plant chromosomes. Plant Cell 12:1523–1540

    Article  PubMed  CAS  Google Scholar 

  • Salse J, Piegu B, Cooke R, Delseny M (2002) Synteny between Arabidopsis thaliana and rice at the genome level: a tool to identify conservation in the ongoing rice genome sequencing project. Nucleic Acids Res 30:2316–2328

    Article  PubMed  CAS  Google Scholar 

  • Sandal N, Krusell L, Radutoiu S, Olbryt M, Pedrosa A, Stracke S, Sato S, Kato T, Tabata S, Parniske M, Bachmair A, Ketelsen T, Stougaard J (2002) A genetic linkage map of the model legume Lotus japonicus and strategies for fast mapping of new loci. Genetics 161:1673–1683

    PubMed  CAS  Google Scholar 

  • Sato S, Kaneko T, Nakamura Y, Asamizu E, Kato T, Tabata S (2001) Structural analysis of a Lotus japonicus genome I. Sequence features and mapping of fifty-six TAC clones which cover the 5.4 Mb regions of the genome. DNA Res 8:311–318

    Article  PubMed  CAS  Google Scholar 

  • Stracke S, Kistner C, Yoshida S, Mulder L, Sato S, Kaneko T, Tabata S, Sandal N, Stougaard J, Szczyglowski K, Parniske M (2002) A plant receptor-like kinase required for both bacterial and fungal symbiosis. Nature 417:959–962

    Article  PubMed  CAS  Google Scholar 

  • Stracke S, Sato S, Sandal N, Koyama M, Kaneko T, Tabata S, Parniske M (2004) Exploitation of colinear relationships between the genomes of Lotus japonicus, Pisum sativum and Arabidopsis thaliana, for positional cloning of a legume symbiosis gene. Theor Appl Genet 108:442–449

    Article  PubMed  CAS  Google Scholar 

  • Tanksley SD, Ganal MW, Prince JP, de Vicente MC, Bonierbale MW, Broun P, Fulton TM, Giovannoni JJ, Grandillo S, Martin GB (1992) High density molecular linkage maps of the tomato and potato genomes. Genetics 132:1141–1160

    PubMed  CAS  Google Scholar 

  • Thoquet P, Gherardi M, Journet EP, Kereszt A, Ane JM, Prosperi JM, Huguet T (2002) The molecular genetic linkage map of the model legume Medicago truncatula: an essential tool for comparative legume genomics and the isolation of agronomically important genes. BMC Plant Biol 2:1–13

    Article  PubMed  Google Scholar 

  • Vision TJ, Brown DG, Tanksley SD (2000) The origins of genomic duplications in Arabidopsis. Science 290: 2114–2117

    Article  PubMed  CAS  Google Scholar 

  • Weeden NL, Muehlbauer FJ, Ladizinsky G (1992) Extensive conservation of linkage relationship between pea and lentil genetic maps. J Hered 83:123–129

    Google Scholar 

  • Yan HH, Mudge J, Kim DJ, Larsen D, Shoemaker RC, Cook DR, Young ND (2003) Estimates of conserved microsynteny among the genomes of Glycine max, Medicago truncatula and Arabidopsis thaliana. Theor Appl Genet 106:1256–1265

    PubMed  CAS  Google Scholar 

  • Zhu H, Kim DJ, Baek JM, Choi HK, Ellis LC, Kuester H, McCombie WR, Peng HM, Cook DR (2003) Syntenic relationships between Medicago truncatula and Arabidopsis reveal extensive divergence of genome organization. Plant Physiol 131:1018–1026

    Article  PubMed  CAS  Google Scholar 

  • Zhu H, Choi HK, Cook DR, Shoemaker RC (2005) Bridging model and crop legumes through comparative genomics. Plant Physiol 137:1189–1196

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank P. Scott for critical reading of the manuscript and P. Somkúti, H. Tiricz, E. Sárai, S. Jenei, and A. Tóth for their skilled technical assistance. This study was supported by European grants; EuDicotMap (grant no. BIO 4CT97-2170; EU), MEDICAGO (grant no. QLG2-CT-2000-30676; EU), Grain legumes (grant no. FOOD-CD-2004-506223), and Hungarian national grants; OMFB EU-97-D8-063 (National Committee for Technical Development), NKFP Medicago Genomics (grant no. 4/023/2001, Ministry of Education), and Medicago Biotechnology (grant no. 4/031/2004), Biotechnology 2001 (grant no. OMFB-00229/2002), OTKA (Hungarian Research Scientific Fund) T038211, OTKA T046645 and OTKA T046819 grants, and the Economic Competitiveness Operative Programs GVOP-3.1.1-2004-05-0101/3.0. G. Endre, P. Kaló A. Kereszt and G. Tóth were supported by János Bolyai postdoctoral fellowships. We thank the US Department of Energy’s Joint Genome Institute and the Poplar Genome Consortium for making the Populus genome sequence draft available before publication.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to György B. Kiss.

Additional information

Communicated by A. Kondorosi

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kevei, Z., Seres, A., Kereszt, A. et al. Significant microsynteny with new evolutionary highlights is detected between Arabidopsis and legume model plants despite the lack of macrosynteny. Mol Genet Genomics 274, 644–657 (2005). https://doi.org/10.1007/s00438-005-0057-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00438-005-0057-9

Keywords

Navigation