Skip to main content
Log in

DNA barcoding and molecular evolution of mosquito vectors of medical and veterinary importance

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

Mosquitoes (Diptera: Culicidae) are a key threat for millions of people worldwide, since they act as vectors for devastating pathogens and parasites. The standard method of utilisation of morphological characters becomes challenging due to various factors such as phenotypical variations. We explored the complementary approach of CO1 gene-based identification, analysing ten species of mosquito vectors belonging to three genera, Aedes, Culex and Anopheles from India. Analysed nucleotide sequences were found without pseudo genes and indels; they match with high similarity in nucleotide Basic Local Alignment Search Tool (BLASTn) search. The partial CO1 sequence of Anopheles niligricus was the first time record submitted to National Center for Biotechnology Information (NCBI). Mean intra- and interspecies divergence was found to be 1.30 and 3.83 %, respectively. The congeneric divergence was three times higher than the conspecifics. Deep intraspecific divergence was noted in three of the species, and the reason could be explained more accurately in the future by improving the sample size across different locations. The transitional and transversional substitutions were tested individually. Ts and Tv substitutions in all the 1st, 2nd and 3rd codons were estimated to be (0.44, 99.51), (40.35, 59.66) and (59.16, 40.84), respectively. Saturation of the sequences was resolved, since both the Ts and Tv exhibited a linear relationship suggesting that the sequences were not saturated. NJ and ML tree analysis showed that the individuals of the same species clustered together based on the CO1 sequence similarity, regardless of their collection site and geographic location. Overall, this study adds basic knowledge to molecular evolution of mosquito vectors of medical and veterinary importance and may be useful to improve biotechnological tools employed in Culicidae control programmes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Alam MT, Das MK, Dev V, Ansari MA, Sharma YD (2007) Identification of two cryptic species in the Anopheles (Cellia) annularis complex using ribosomal DNA PCR-RFLP. Parasitol Res 100:943–948

    Article  PubMed  Google Scholar 

  • Amerasan D, Nataraj T, Murugan K, Madhiyazhagan P, Panneerselvam C, Nicoletti M, Benelli G (2015) Mico-synthesis of silver nanoparticles using Metarhizium anisopliae against the rural malaria vector Anopheles culicifacies Giles (Diptera: Culicidae). J Pest Sci. doi:10.1007/s10340-015-0675-x

    Google Scholar 

  • Ashfaq M, Hebert PDN, Mirza JH, Khan AM, Zafar Y, Mirza MS (2014) Analyzing mosquito (Diptera: Culicidae) diversity in Pakistan by DNA barcoding. PLoS ONE 9(5):e97268

    Article  PubMed  PubMed Central  Google Scholar 

  • Benelli G (2015) Research in mosquito control: current challenges for a brighter future. Parasitol Res. doi:10.1007/s00436-015-4586-9

    Google Scholar 

  • Blouin MS, Yowell CA, Courtney CH, Dame JB (1998) Substitution bias, rapid saturation, and use of mtDNA for nematode systematics. Mol Biol Evol 15:1719–1727

    Article  CAS  PubMed  Google Scholar 

  • Bortolus A (2008) Error cascades in the biological sciences: the unwanted consequences of using bad taxonomy in ecology. Ambio 37:114–118

    Article  PubMed  Google Scholar 

  • Bram RA (1967) Contributions to the mosquito fauna of Southeast Asia II: the genus Culex in Thailand (Diptera: Culicidae). Contrib Am Entomol Inst 2:1

    Google Scholar 

  • Chan A, Chiang LP, Hapuarachchi HC, Tan CH, Pang SC, Lee R, Lam-Phua SG (2014) DNA barcoding: complementing morphological identification of mosquito species in Singapore. Parasit Vectors 7:569. doi:10.1186/s13071-014-0569-4

    Article  PubMed  PubMed Central  Google Scholar 

  • Chen B, Harbach RE, Butlin RK (2002) Molecular and morphological studies on the Anopheles minimus group of mosquitoes in southern China: taxonomic review, distribution and malaria vector status. Med Vet Entomol 16:253–265

    Article  CAS  PubMed  Google Scholar 

  • Cywinska A, Hunter FF, Hebert PDN (2006) Identifying Canadian mosquito species through DNA barcodes. Med Vet Entomol 20:413–424

    Article  CAS  PubMed  Google Scholar 

  • Dash AP, Adak T, Raghavendra K, Singh OP (2007) The biology and control of malaria vectors in India. Curr Sci 92:1571–1578

    Google Scholar 

  • Diagne CT, Faye O, Guerbois M, Knight R, Diallo D, Faye O, Ba Y, Dia I, Faye O, Weaver SC et al (2014) Vector competence of Aedes aegypti and Aedes vittatus (diptera: Culicidae) from Senegal and Cape Verde archipelago for West African lineages of chikungunya virus. Am J Trop Med Hygiene 91:635–641

    Article  Google Scholar 

  • Dwivedi B, Gadagkar SR (2009) The impact of sequence parameter values on phylogenetic accuracy. Biol Med 1:50–62

    CAS  Google Scholar 

  • Engdahl C, Larsson P, Näslund J, Bravo M, Evander M, Lundström JO, Ahlm C, Bucht G (2014) Identification of Swedish mosquitoes based on molecular barcoding of the COI gene and SNP analysis. Mol Ecol Res 14:478–488

    Article  CAS  Google Scholar 

  • Feinstein J (2004) DNA sequence from butterfly frass and exuviae. Conserv Genet 5:103–104

    Article  CAS  Google Scholar 

  • Felsenstein J (1985) Confidence limits on phylogenies: an approach using the bootstrap. Evolution 39:783–791

    Article  Google Scholar 

  • Gaffigan TV, Wilkerson RC, Pecor JE, Stoffer JA, Anderson T (2015) Systematic Catalog of Culicidae. http://www.mosquitocatalog.org/

  • Gaikwad SS, Ghate HV, Ghaskadbi SS, Patole MS, Shouche YS (2012) DNA barcoding of nymphalid butterflies (Nymphalidae: Lepidoptera) from Western Ghats of India. Mol Biol Rep 39:2375–2383. doi:10.1007/s11033-011-0988-7

    Article  CAS  PubMed  Google Scholar 

  • Galtier N, Nabholz B, Glemin S, Hurst GDD (2009) Mitochondrial DNA as a marker of molecular diversity: a reappraisal. Mol Ecol 18:454124550

    Article  Google Scholar 

  • Garros C, Koekemoer LL, Cortzee M, Coosemans M, Manguin S (2004) A single multiplex assay to identify major malaria vectors with the African Anopheles funestus and the Oriental An. minimus groups. Am J Trop Med Hyg 70(6):583–590

    CAS  PubMed  Google Scholar 

  • Gregory PG, Rinderer TE (2004) Non- destructive sources of DNA used to genotype honey bee (Apis mellifera) queens. Entomol Exp Appl 111:173–177

    Article  CAS  Google Scholar 

  • Gunay F, Alten B, Simsek F, Aldemir A, Linton YM (2015) Barcoding Turkish Culex mosquitoes to facilitate arbovirus vector incrimination studies reveals hidden diversity and new potential vectors. Acta Trop 143:112–120

    Article  PubMed  Google Scholar 

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Harrison BA, Scanlon JE (1975) The subgenus Anopheles in Thailand (Diptera: Culicidae). Contrib Am Entomol Inst 12:1

    Google Scholar 

  • Hebert PD, Cywinska A, Ball SL, deWaard JR (2003a) Biological identifications through DNA barcodes. Proc R Soc Lond B 270:313–321

    Article  CAS  Google Scholar 

  • Hebert PD, Ratnasingham S, De Waard JR (2003b) Barcoding animal life: cytochrome c oxidase subunit 1 divergences among closely related species. Proc Biol Sci 270:S96–S99

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hebert P, Stoeckle M, Zemlak T, Francis C (2004) Identification of birds through DNA barcodes. PLoS Biol 2:e312

    Article  PubMed  PubMed Central  Google Scholar 

  • Johnson K, Seger J (2001) Elevated rates of non-synonymous evolution in island birds. Mol Biol Evol 18:874–881

    Article  CAS  PubMed  Google Scholar 

  • Jukes TH, Cantor CR (1969) Evolution of protein molecules. In: Munro HN (ed) Mammalian protein metabolism. Academic, New York, pp 21–132

    Chapter  Google Scholar 

  • Kang D, Sim C (2013) Identification of Culex complex species using SNP markers based on high-resolution melting analysis. Mol Ecol Res 13:369–376

    Article  CAS  Google Scholar 

  • Krueger A, Obermayr U, Czajka C, Bueno-Marí R, Jöst A, Rose A (2014) COI sequencing for invasive mosquito surveillance in Germany reveals genetically divergent specimens near Aedes geniculatus (Diptera: Culicidae), J Eur Mosq Contr Assoc 32

  • Kumar NP, Rajavel AR, Natarajan R, Jambulingam P (2007) DNA barcodes can distinguish species of Indian mosquitoes (Diptera: Culicidae). J Med Entomol 44:1–7

    Article  CAS  PubMed  Google Scholar 

  • Lara A, Ponce de Leon JL, Rodríguez R, Casane D, Côté G, Bernatchez L, García-Machado E (2010) DNA barcoding of Cuban freshwater fishes: evidence for cryptic species and taxonomic conflicts. Mol Ecol Resour 10:421–430

    Article  CAS  PubMed  Google Scholar 

  • Lehr MA, Kilpatrick CW, Wilkerson RC, Conn JE (2005) Cryptic species in the Anopheles (Nyssorhynchus) albitarsis (Diptera: Culicidae) complex: incongruence between random amplified polymorphic DNA-polymerase chain reaction identification and analysis of mitochondrial DNA COI gene sequences. Ann Entomol Soc Am 98:908–917

    Article  PubMed  PubMed Central  Google Scholar 

  • Low VL, Lim PE, Chen CD, Lim YAL, Tan TK et al (2014) Mitochondrial DNA analysis reveal low genetic diversity in Culex quinquefasciatus from residential areas of Malaysia. Med Vet Entomol 28:157–168. doi:10.1111/mve.12022 21

    Article  CAS  PubMed  Google Scholar 

  • Manonmani A, Townson H, Adeniran T, Jambulingam P, Sahu S et al (2001) rDNA-ITS2 polymerase chain reaction assay for the sibling species of Anopheles fluviatilis. Acta Trop 78:329

    Article  Google Scholar 

  • Mehlhorn H, Al-Rasheid KAS, Al-Quraishy S, Abdel-Ghaffar F (2012) Research and increase of expertise in arachno-entomology are urgently needed. Parasitol Res 110:259–265

    Article  PubMed  Google Scholar 

  • Moore M, Sylla M, Goss L, Burugu MW, Sang R et al (2013) Dual African origin of global Aedes aegypti. l. Populations revealed by mitochondrial DNA. PLoS Negl Trop Dis 7:e2175

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moran AL (2002) Correlated evolutionary divergence of egg size and a mitochondrial protein across the isthmus of Panama. Evolution 56:1303–1309

    Article  PubMed  Google Scholar 

  • Naddaf SR, Oshaghi MA, Vatandoost H (2012) Confirmation of two sibling species among Anopheles fluviatilis mosquitoes in south and south-eastern Iran by analysis of cytochrome oxidase I gene. J Arthropod Borne Dis 6(2):144–150

    PubMed  PubMed Central  Google Scholar 

  • Nei M, Gojobori T (1986) Simple methods for estimating the numbers of synonymous and nonsynonymous nucleotide substitutions. Mol Biol Evol 3:418–426

    CAS  PubMed  Google Scholar 

  • Papadopoulou A, Anastasiou I, Vogler AP (2010) Revisiting the insect mitochondrial molecular clock: the mid-Aegean trench calibration. Mol Biol Evol 27:1659–1672

    Article  CAS  PubMed  Google Scholar 

  • Pfeiler E, Flores-Lopez CA, Mada-Velez JG, Escalante-Verdugo J, Markow TA (2013) Genetic diversity and population genetics of mosquitoes (Diptera: Culicidae: Culex spp.) from the Sonoran Desert of North America. Sci World J 724609, doi:10.1155/2013/724609

  • Rajavel R, Natarajan R, Vaidyanathan K, Jambulingam P (2011) Systematic list of the species added to the Mosquito Museum at the vector control research centre, Pondicherry, India. J Am Mosq Contr Assoc 27(1):8–14

    Article  CAS  Google Scholar 

  • Rattanarithikul R, Harrison BA, Panthusiri P, Peyton EL, Coleman RE (2006) Illustrated keys to the mosquitoes of Thailand III. Genera Aedeomyia, Ficalbia, Mimomyia, Hodgesia, Coquillettidia, Mansonia, and Uranotaenia. Southeast Asian J Trop Med Public Health 37(1):1–85

    Google Scholar 

  • Rattanarithikul R, Harbach RE, Harrison BA, Panthusiri P, Coleman RE, Richardson JH (2011) Illustrated keys to the mosquitoes of Thailand. VI. Tribe Aedini. Southeast Asian J Trop Med Public Health 41(1):1–225

    Google Scholar 

  • Reidenbach KR, Cook S, Bertone MA, Harbach RE, Wiegmann BM, Besansky NJ (2009) Phylogenetic analysis and temporal diversification of mosquitoes (Diptera: Culicidae) based on nuclear genes and morphology. BMC Evol Biol 298(9):1–14

    Google Scholar 

  • Reinert JF (2000) New classification for the composite genus Aedes (Diptera: Culicidae: Aedini), elevation of subgenus Ochlerotatus to generic rank, reclassification of the other subgenera, and notes on certain sub-genera and species. Am Mosq Control Assoc 16:175–188

    CAS  Google Scholar 

  • Reinert JF, Harbach RE, Kitching IJ (2009) Phylogeny and classification of tribe Aedini (Diptera: Culicidae). Zool J Linnean Soc 157:700–794

    Article  Google Scholar 

  • Reuben R, Tewari SC, Hiriyan J, Akiyama J (1994) Illustrated keys to species of Culex associated with Japanese encephalitis in Southeast Asia (Diptera: Culicidae). Mosq System 26:75–96

    Google Scholar 

  • Rivera J, Currie DC (2009) Identification of Nearctic black flies using DNA barcodes (Diptera: Simuliidae). Mol Ecol Resour 9(1):224–236

    Article  CAS  PubMed  Google Scholar 

  • Ross HH (1951) Conflict with Culex. Mosquito News 11:128–132

    Google Scholar 

  • Rueda LM, Pecor JE, Harrison BA (2011) Updated distribution records for Anopheles vagus (Diptera: Culicidae) in the Republic of Philippines, and considerations regarding its secondary vector roles in Southeast Asia. Trop Biomed 28:181–187

    CAS  PubMed  Google Scholar 

  • Ruiz F, Quiñones ML, Erazo HF, Calle DA, Alzate JF, Linton YM (2005) Molecular differentiation of Anopheles (Nyssorhynchus) benarrochi and An. (N.) oswaldoi from Southern Colombia. Mem Inst Oswaldo Cruz 100:155–160

    Article  CAS  PubMed  Google Scholar 

  • Ruiz-Lopez F, Wilkerson RC, Conn JE, McKeon SN, Levin DM, Quiñones ML, Póvoa MM, Linton YM (2012) DNA barcoding reveals both known and novel taxa in the albitarsis Group (Anopheles: Nyssorhynchus) of Neotropical malaria vectors. Parasit Vectors 5:44

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saccone C, DeCarla G, Gissi C, Pesole G, Reynes A (1999) Evolutionary genomics in the Metazoa: the mitochondrial DNA as a model system. Gene 238:195–210

    Article  CAS  PubMed  Google Scholar 

  • Saitou N, Nei M (1987) The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    CAS  PubMed  Google Scholar 

  • Scholte, J-E, Schaffner F (2007) Waiting for the tiger: establishment and spread of the Aedes albopictus mosquito in Europe. In: Takken W, Knols BGJ (ed) Emerging pests and vector-borne diseases in Europe 1. Wageningen Academic Publishers. ISBN 978-90-8686-053-1

  • Severson DW, Behura SK (2012) Mosquito genomics: progress and challenges. Annu Rev Entomol 57:143–166

    Article  CAS  PubMed  Google Scholar 

  • Sharma AK, Chandel K, Tyagi V, Mendki MJ, Tikar SN, Sukumaran D (2013) Molecular phylogeny and evolutionary relationship among four mosquito (Diptera: Culicidae) species from India using PCR-RFLP. J Mosq Res 3:58–64

    Google Scholar 

  • Shepard JJ, Andreadis TG, Vossbrinck CR (2006) Molecular phylogeny and evolutionary relationships among mosquitoes (Diptera: Culicidae) from the north-eastern United States based on small subunit ribosomal DNA (18S ribosomal DNA) sequences. J Med Entomol 43:443–454

    Article  CAS  PubMed  Google Scholar 

  • Singh OP, Chandra D, Nanda N, Raghavendra K, Sunil S et al (2004) Differentiation of members of Anopheles fluviatilis species complex by an allele- specific polymerase chain reaction based on 28S ribosomal DNA sequences. Am J Trop Med Hyg 70:27232

    Google Scholar 

  • Surendran SN, Gajapathy K, Kumaran V, Tharmatha T, Jude PJ, Ramasamy R (2011) Molecular evidence for the presence of malaria vector species a of the Anopheles annularis complex in Sri Lanka. Parasit Vectors 4:239

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Suresh U, Murugan K, Benelli G, Nicoletti M, Barnard DR, Panneerselvam C, Mahesh Kumar P, Subramaniam J, Dinesh D, Chandramohan B (2015) Tackling the growing threat of dengue: Phyllanthus niruri-mediated synthesis of silver nanoparticles and their mosquitocidal properties against the dengue vector Aedes aegypti (Diptera: Culicidae). Parasitol Res 114:1551–1562

    Article  PubMed  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: Molecular Evolutionary Genetics Analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Taraphdar D, Sarkar A, Chatterjee S (2012) Mass scale screening of common arboviral infections by an affordable, cost effective RT-PCR method. Asian Pac J Trop Biomed 2:97–101

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Turell MJ (2012) Members of the Culex pipiens complex as vectors of viruses. J Am Mosq Contr Assoc 28:123–126

    Article  Google Scholar 

  • Wan QH, Wu H, Fujihara T, Fang SG (2004) Which genetic marker for which conservation genetics issue? Electrophoresis 25:2165–2176

    Article  CAS  PubMed  Google Scholar 

  • Wang G, Li C, Guo X, Xing D, Dong Y et al (2012) Identifying the main mosquito species in China based on DNA barcoding. PLoS ONE 7:e47051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ward RD, Zemlak TS, Innes BH, Last PR, Hebert PD (2005) DNA barcoding Australia’s fish species. Philos Trans R Soc Lond B Biol Sci 360(1462):1847–1857

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Watts PC, Thompson DJ, Daguet C, Kemp SJ (2005) Exuviae as a reliable source of DNA for population-genetic analysis of odonates. Odonatologica 34(2):183–187

    Google Scholar 

  • Werblow A, Bolius S, Dorresteijn AW, Melaun C, Klimpel S (2013) Diversity of Culex torrentium Martini, 1925—a potential vector of arboviruses and filaria in Europe. Parasitol Res 112:2495–2501

    Article  PubMed  Google Scholar 

  • Xia X (2013) DAMBE5: a comprehensive software package for data analysis in molecular biology and evolution. Mol Biol Evol 30(7):1720–1728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xia X, Lemey P (2009) Assessing substitution saturation with DAMBE. In: Lemey P, Salemi M, Vandamme A-M (eds) The phylogenetic handbook: a practical approach to DNA and protein phylogeny. 2nd edition Cambridge University Press, pp 615–630

  • Xia X, Xie Z, Salemi M, Chen L, Wang Y (2003) An index of substitution saturation and its application. Mol Phylogenet Evol 26:1–7

    Article  CAS  PubMed  Google Scholar 

  • Zhang J, Kumar S, Nei M (1997) Small-sample tests of episodic adaptive evolution: a case study of primate lysozymes. Mol Biol Evol 14:1335–1338

    Article  CAS  PubMed  Google Scholar 

  • Zhang M, Cao T, Zhang R, Guo Y, Duan Y, Ma E (2007) Phylogeny of Apaturinae butterflies (Lepidoptera: Nymphalidae) based on mitochondrial cytochrome oxidase I gene. J Genet Genomics 34:812–823

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank the SAARP Trust (Coimbatore, India), and the Research Chair in Laser Diagnosis of Cancers and the Department of Physics and Astronomy, Deanship of Scientific Research King Saud University, Saudi Arabia, for financial support (project no. RGP-1435-057). C. Panneerselvam is grateful to the University Grant Commission (New Delhi, India), Project no. PDFSS-2014-15-SC-TAM-8566.

Conflicts of interest

The authors declare no conflicts of interest. G. Benelli is an Editorial Board Member of Parasitology Research. This does not alter the author’s adherence to all the Parasitology Research policies on sharing data and materials.

Compliance with ethical standards

All applicable international and national guidelines for the care and use of animals were followed. All procedures performed in studies involving animals were in accordance with the ethical standards of the institution or practice at which the studies were conducted.

Informed consent

Informed consent was obtained from all individual participants included in the study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Giovanni Benelli.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Data File 1

(DOC 193 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Murugan, K., Vadivalagan, C., Karthika, P. et al. DNA barcoding and molecular evolution of mosquito vectors of medical and veterinary importance. Parasitol Res 115, 107–121 (2016). https://doi.org/10.1007/s00436-015-4726-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-015-4726-2

Keywords

Navigation