Skip to main content

Advertisement

Log in

Efficacy of larvicidal botanical extracts against Culex quinquefasciatus Say (Diptera: Culicidae)

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

Abstract

The present study explored the effects of crude leaf acetone, chloroform, hot water, methanol, petroleum ether (60–80°C), and water extracts of Calotropis procera (Ait) R. Br., Canna indica L., Hibiscus rosa-sinensis Linn., Ipomoea carnea Jacq. spp. fistulosa Choisy, and Sarcostemma brevistigma Wight that were selected for investigating larvicidal potential against second and fourth instar larvae of the laboratory-reared mosquito species, Culex quinquefasciatus Say, in which the major lymphatic filariasis was used. All plant extracts showed moderate larvicidal effects after 24 h of exposure at 1,000 ppm; however, the highest larval mortality was found in leaf acetone, chloroform, methanol, and petroleum ether of C. indica (LC50 = 29.62, 59.18, 40.77, and 44.38 ppm; LC90 = 148.55, 267.87, 165.00, and 171.91 ppm) against second instar larvae (LC50 = 121.88, 118.25, 69.76, and 56.31 ppm; LC90 = 624.35, 573.93, 304.27, and 248.24 ppm) and against fourth instar larvae and acetone, hot water, methanol, and petroleum ether extracts of I. carnea (LC50 = 61.17, 41.07, 41.82, and 39.32 ppm; LC90 = 252.91, 142.67, 423.76, and 176.39 ppm) against second instar larvae (LC50 = 145.37, 58.00, 163.81, and 41.75 ppm; LC90 = 573.30, 181.10, 627.38, and 162.63 ppm) and against fourth instar larvae of C. quinquefasciatus, respectively. These results suggest that the acetone, methanol extracts of C. indica and hot water, petroleum ether extracts of I. carnea have the potential to be used as an ideal eco-friendly approach for the control of the major lymphatic filariasis vector, C. quinquefasciatus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Al-Rajhy DH, Alahmed AM, Hussein HI, Kheir SM (2003) Acaricidal effects of cardiac glycosides, azadirachtin and neem oil against the camel tick, Hyalomma dromedarii (Acari: Ixodidae). Pest Manag Sci 59(11):1250–1254

    Article  CAS  PubMed  Google Scholar 

  • Amer A, Mehlhorn H (2006a) Larvicidal effects of various essential oils against Aedes, Anopheles, and Culex larvae (Diptera, Culicidae). Parasitol Res 99:466–472

    Article  PubMed  Google Scholar 

  • Amer A, Mehlhorn H (2006b) Persistency of larvicidal effects of plant oil extracts under different storage conditions. Parasitol Res 99:473–477

    Article  PubMed  Google Scholar 

  • Bagavan A, Rahuman AA, Kamaraj C, Geetha K (2008) Larvicidal activity of saponin from Achyranthes aspera against Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res 103(1):223–229

    Article  CAS  PubMed  Google Scholar 

  • Bagavan A, Kamaraj C, Rahuman AA, Elango G, Zahir AA, Pandiyan G (2009) Evaluation of larvicidal and nymphicidal potential of plant extracts against Anopheles subpictus Grassi, Culex tritaeniorhynchus Giles and Aphis gossypii Glover. Parasitol Res (in press) doi:10.1007/s00436-008-1295-7

  • Bajwa GA, Rajpar MN (2001) Biological activity of extract of different plants against termites, nettle tree leaf beetle and amaltas leaf stitcher. Pak J For 51(2):31–41

    Google Scholar 

  • Cetin H, Erler F, Yanikoglu A (2004) Larvicidal activity of a botanical natural product, AkseBio2, against Culex pipiens. Fitoterapia 75:724–728

    Article  CAS  PubMed  Google Scholar 

  • Chansang U, Zahiri NS, Bansiddhi J, Boonruad T, Thongsrirak P, Mingmuang J, Benjapong N, Mulla MS (2005) Mosquito larvicidal activity of aqueous extracts of long pepper (Piper retrofractum vahl) from Thailand. J Vector Ecol 30(2):195–200

    PubMed  Google Scholar 

  • Chaubal R, Pawar PV, Hebbalkar GD, Tungikar VB, Puranik VG, Deshpande VH, Deshpande NR (2005) Larvicidal activity of Acacia nilotica extracts and isolation of D-pinitol—a bioactive carbohydrate. Chem Biodivers 2(5):684–688

    Article  CAS  PubMed  Google Scholar 

  • Cheung CCC, Lam PKS (1998) Effect of cadmium on the embryonic and juveniles of tropical freshwater snail, Physa acuta (Draparnaud, 1805). Water Sci Technol 38(7):263–270

    Article  CAS  Google Scholar 

  • Chowdhury N, Ghosh A, Chandra G (2008) Mosquito larvicidal activities of Solanum villosum berry extract against the dengue vector Stegomyia aegypti. BMC Complement Altern Med 3(8):10

    Article  Google Scholar 

  • Dua VK, Pandey AC, Alam ME, Dash AP (2006) Larvicidal activity of Hibiscus abelmoschus Linn. (Malvaceae) against mosquitoes. J Am Mosq Control Assoc 22(1):155–157

    Article  PubMed  Google Scholar 

  • Farag EA, Khalil MT (1990) Chronic molluscicidal activity of Canna indica leaves on Bulinus truncatus snail, the intermediate host of Schistosoma hematobium. J Egypt Ger Soc Zool 2:25–33

    Google Scholar 

  • Gan LS, Yang SP, Fan CQ, Yue JM (2005) Lignans and their degraded derivatives from Sarcostemma acidum. J Nat Prod 68(2):221–225

    Article  CAS  PubMed  Google Scholar 

  • Gilani AH, Bashir S, Janbaz KH, Shah AJ (2005) Presence of cholinergic and calcium channel blocking activities explains the traditional use of Hibiscus rosasinensis in constipation and diarrhoea. J Ethnopharmacol 102(2):289–294

    Article  PubMed  Google Scholar 

  • Haque MA (2002) Chemical methods of leaf extraction of Bankalmi, Polygonum hydropiper for controlling rice hispa beetles, Dicladispa armiger (Olivier) (Coleoptera: Chrysomelidae) in Bangladesh. J Biol Sci 2(12):782–784

    Article  Google Scholar 

  • Haque MA, Nakakita H, Ikenaga H, Sota N (2000) Development-inhibiting activity of some tropical plants against Sitophilus zeamais Motschulsky (Coleoptera: Curculionidae). J Stored Prod Res 36(3):281–287

    Article  PubMed  Google Scholar 

  • Haraguchi M, Gorniak SL, Ikeda K, Minami Y, Kato A, Watson AA, Nash RJ, Molyneux RJ, Asano N (2003) Alkaloidal components in the poisonous plant, Ipomoea carnea (Convolvulaceae). J Agric Food Chem 51(17):4995–5000

    Article  CAS  PubMed  Google Scholar 

  • Harve G, Kamath V (2004) Larvicidal activity of plant extracts used alone and in combination with known synthetic larvicidal agents against Aedes aegypti. Indian J Exp Biol 42(12):1216–1219

    PubMed  Google Scholar 

  • Hebling MJA, Bueno OC, Maroti PS, Pagnocca FC, da Silva OA (2003) Effects of leaves of Ipomoea batatas (Convolvulaceae) on nest development and on respiratory metabolism of leaf-cutting ants Atta sexdens L. (Hym., Formicidae). J Appl Entomol 124(5–6):249–252

    Google Scholar 

  • Kamaraj C, Rahuman AA, Bagavan A (2008a) Screening for antifeedant and larvicidal activity of plant extracts against Helicoverpa armigera (Hübner), Sylepta derogata (F.) and Anopheles stephensi (Liston). Parasitol Res 103(6):1361–1368

    Article  CAS  PubMed  Google Scholar 

  • Kamaraj C, Rahuman AA, Bagavan A (2008b) Antifeedant and larvicidal effects of plant extracts against Spodoptera litura (F.), Aedes aegypti L. and Culex quinquefasciatus Say. Parasitol Res 103(2):325–331

    Article  CAS  PubMed  Google Scholar 

  • Kannathasan K, Senthilkumar A, Chandrasekaran M, Venkatesalu V (2007) Differential larvicidal efficacy of four species of Vitex against Culex quinquefasciatus larvae. Parasitol Res 101(6):1721–1723

    Article  PubMed  Google Scholar 

  • Karunamoorthi K, Ramanujam S, Rathinasamy R (2008) Evaluation of leaf extracts of Vitex negundo L. (Family: Verbenaceae) against larvae of Culex tritaeniorhynchus and repellent activity on adult vector mosquitoes. Parasitol Res 103(3):545–550

    Article  PubMed  Google Scholar 

  • Kirtikar KR, Basu BD (1993) Indian Medicinal Plants, International Book Publisher, Dehradun 3:1621–1622

  • Komalamisra N, Trongtokit Y, Rongsriyam Y, Apiwathnasorn C (2005) Screening for larvicidal activity in some Thai plants against four mosquito vector species. Southeast Asian J Trop Med Public Health 36(6):1412–1422

    PubMed  Google Scholar 

  • Kumar PS, Soni K, Jadhav SR, Doshi NS, Saraf MN (2007) Mechanism of spasmolytic activity of a fraction of Sarcostemma brevistigma Wight. Indian J Exp Biol 45(5):419–424

    PubMed  Google Scholar 

  • Larhsini M, Oumoulid L, Lazrek HB, Wataleb S, Bousaid M, Bekkouche M, Markouk M, Jana M (1999) Screening of anti bacterial and anti parasitic activity of six Moroccan medicinal plants. Therapie 54(6):763–765

    CAS  PubMed  Google Scholar 

  • Markouk M, Bekkouche K, Larhsini M, Bousaid M, Lazrek HB, Jana M (2000) Evaluation of some Moroccan medicinal plant extracts for larvicidal activity. J Ethnopharmacol 73(1–2):293–297

    Article  CAS  PubMed  Google Scholar 

  • Mascolo N, Sharma R, Jain SC, Calpasso F (1988) Ethnopharmacology of Calotropis procera flowers. J Ethnopharmacol 22(2):211–221

    Article  CAS  PubMed  Google Scholar 

  • Molyneux RJ, Lee ST, Gardner DR, Panter KE, James LF (2007) Phytochemicals: the good, the bad and the ugly. Phytochemistry 68(22–24):2973–2985

    Article  CAS  PubMed  Google Scholar 

  • Moretti MD, Sanna-Passino G, Demontis S, Bazzoni E (2002) Essential oil formulations useful as a new tool for insect pest control. AAPS Pharm Sci Tech 3:E13

    Article  Google Scholar 

  • Morsy TA, Rahem MA, Allam KA (2001) Control of Musca domestica third instar larvae by the latex of Calotropis procera (Family: Asclepiadaceae). J Egypt Soc Parasitol 31(1):107–110

    CAS  PubMed  Google Scholar 

  • Moursy LE (1997) Insecticidal activity of Calotropis procera extract on the flesh fly, Sarcophaga haemorrhoidalis Fallen. J. Egypt Soc Parasitol 2:505–514

    Google Scholar 

  • Mullai K, Jebanesan A (2007) Larvicidal, ovicidal and repellent activities of the leaf extract of two cucurbitaceous plants against filarial vector Culex quinquefasciatus (Say) (Diptera: Culicidae). Trop Biomed 24(1):1–6

    CAS  PubMed  Google Scholar 

  • Nath DR, Bhuyan M, Goswami S (2006) Botanicals as mosquito larvicides. Def Sci J 56(4):507–511

    Google Scholar 

  • Neraliya S, Srivastava US (1996) Effect of plant extracts on post-embryonic development of the mosquito Culex quinquefasciatus. J Adv Zool 17:54–58

    Google Scholar 

  • Nirmal SA, Shelke SM, Gagare PB, Jadhav PR, Dethe PM (2007) Antinociceptive and anthelmintic activity of Canna indica. Nat Prod Res 21(12):1042–1047

    Article  CAS  PubMed  Google Scholar 

  • Prabakar K, Jebanesan A (2004) Larvicidal efficacy of some cucurbitaceous plant leaf extracts against Culex quinquefasciatus (Say). Bioresour Technol 95(1):113–114

    Article  CAS  PubMed  Google Scholar 

  • Rahuman AA, Venkatesan P (2008) Larvicidal efficacy of five cucurbitaceous plant leaf extracts against mosquito species. Parasitol Res 103(1):133–139

    Article  PubMed  Google Scholar 

  • Rahuman AA, Gopalakrishnan G, Ghouse BS, Arumugam S, Himalayan B (2000) Effect of Feronia limonia on mosquito larvae. Fitoterapia 71(5):553–555

    Article  CAS  PubMed  Google Scholar 

  • Rahuman AA, Gopalakrishnan G, Venkatesan P, Geetha K (2008a) Isolation and identification of mosquito larvicidal compound from Abutilon indicum (Linn.) Sweet. Parasitol Res 102(5):981–988

    Article  PubMed  Google Scholar 

  • Rahuman AA, Venkatesan P, Gopalakrishnan G (2008b) Mosquito larvicidal activity of oleic and linoleic acids isolated from Citrullus colocynthis (Linn.) Schrad. Parasitol Res 103(6):1383–1390

    Article  PubMed  Google Scholar 

  • Rahuman AA, Gopalakrishnan G, Venkatesan P, Geetha K, Bagavan A (2008c) Mosquito larvicidal activity of isolated compounds from the rhizome of Zingiber officinale. Phytother Res 22(8):1035–1039

    Article  CAS  PubMed  Google Scholar 

  • Rahuman AA, Venkatesan P, Geetha K, Gopalakrishnan G, Bagavan A, Kamaraj C (2008d) Mosquito larvicidal activity of gluanol acetate, a tetracyclic triterpenes derived from Ficus racemosa Linn. Parasitol Res 103(2):333–339

    Article  PubMed  Google Scholar 

  • Rahuman AA, Gopalakrishnan G, Venkatesan P, Geetha K (2008e) Larvicidal activity of some Euphorbiaceae plant extracts against Aedes aegypti and Culex quinquefasciatus (Diptera: Culicidae). Parasitol Res 102:867–873

    Article  PubMed  Google Scholar 

  • Rahuman AA, Bagavan A, Kamaraj C, Vadivelu M, Zahir AA, Elango G, Pandiyan G (2009) Evaluation of indigenous plant extracts against larvae of Culex quinquefasciatus Say (Diptera: Culicidae). Parasitol Res 104:637–643

    Google Scholar 

  • Rajkumar S, Jebanesan A (2007) Repellent activity of selected plant essential oils against the malarial fever mosquito Anopheles stephensi. Trop Biomed 24(2):71–75

    CAS  PubMed  Google Scholar 

  • Ramos MV, Bandeira Gde P, de Freitas CD, Nogueira NA, Alencar NM, de Sousa PA, Carvalho AF (2006) Latex constituents from Calotropis procera (R. Br.) display toxicity upon egg hatching and larvae of Aedes aegypti (Linn.). Mem Inst Oswaldo Cruz 101(5):503–510

    Article  PubMed  Google Scholar 

  • Reddy PJ, Krishna D, Murthy US, Jamil K (1992) A microcomputer FORTRAN program for rapid determination of lethal concentration of biocides in mosquito control. CABIOS 8:209–213

    CAS  PubMed  Google Scholar 

  • Ross MSF, Brian KR (1977) An introduction to pharmacy. Pitman, Bath

    Google Scholar 

  • Sakthivadivel M, Thilagavathy D (2003) Larvicidal and chemosterilant activity of the acetone fraction of petroleum ether extract from Argemone mexicana L seed. Bioresour Technol 89(2):213–216

    Article  CAS  PubMed  Google Scholar 

  • Saravanan KS, Periyanayagam K, Ismail M (2007) Mosquito larvicidal properties of various extract of leaves and fixed oil from the seeds of Caesalpinia bonduc (L) Roxb. J Commun Dis 39(3):153–157

    PubMed  Google Scholar 

  • Saxena SC, Sumithra L (1985) Laboratory evaluation of leaf extract of a new plant (Ipomoea fistulosa) to suppress the population of malaria vector Anopheles stephensi. Curr Sci 54(4):201–202

    Google Scholar 

  • Senthilkumar N, Varma P, Gurusubramanian G (2009) Larvicidal and adulticidal activities of some medicinal plants against the Malarial Vector, Anopheles stephensi (Liston). Parasitol Res 104:237–244

    Google Scholar 

  • Sethuraman MG, Lalitha KG, Rajkapoor B (2003) Hepatoprotective activity of Sarcostemma brevistigma again carbon tetrachloride-induced hepatic damage in rats. Current Science 84(9):1186–1187

    Google Scholar 

  • Shaalan EA, Canyon DV, Younes MW, Abdel-Wahab H, Mansour AH (2006) Efficacy of eight larvicidal botanical extracts from Khaya senegalensis and Daucus carota against Culex annulirostris. J Am Mosq Control Assoc 22(3):433–436

    Article  PubMed  Google Scholar 

  • Sharma P, Sharma JD (1999) Evaluation of in vitro schizontocidal activity of plant parts of Calotropis procera—an ethnobotanical approach. J Ethnopharmacol 68(1–3):83–95

    Article  CAS  PubMed  Google Scholar 

  • Sharma P, Sharma JD (2001) In vitro hydrolysis of erythrocytes—by plant extracts with anti plasmodial activity. J Ethnopharmacol 74(3):239–243

    Article  CAS  PubMed  Google Scholar 

  • Sharma P, Mohan L, Srivastava CN (2005) Larvicidal potential of Nerium indicum and Thuja orientalis extracts against malaria and Japanese encephalitis vector. J Environ Biol 26(4):657–660

    PubMed  Google Scholar 

  • Singh RK, Mittal PK, Dhiman RC (2005) Laboratory study on larvicidal properties of leaf extract of Calotropis procera (Family-Asclepiadaceae) against mosquito larvae. J Commun Dis 37(2):109–113

    CAS  PubMed  Google Scholar 

  • Sinha KR (1998) Embarking on the second green revolution for sustainable agriculture in India: a judicious mix of traditional wisdom and modern knowledge in ecological farming. J Agric Environ Ethics 10:183–197

    Article  Google Scholar 

  • Thomas TG, Rao S, Lal S (2004) Mosquito larvicidal properties of essential oil of an indigenous plant, Ipomoea cairica Linn. Jap J Infect Dis 57(4):176–177

    Google Scholar 

  • Tripathi SM, Singh DK (2000) Molluscicidal activity of Punica granatum bark and Canna indica root. Braz J Med Biol Res 33(11):1351–1355

    Article  CAS  PubMed  Google Scholar 

  • Tripathi SM, Singh VK, Singh S, Singh DK (2004) Enzyme inhibition by the molluscicidal agent Punica granatum Linn. bark and Canna indica Linn. root. Phytother Res 18(7):501–506

    Article  PubMed  Google Scholar 

  • Uawonggul N, Chaveerach A, Thammasirirak S, Arkaravichien T, Chuachan C, Daduang S (2006) Screening of plants acting against Heterometrus laoticus scorpion venom activity on fibroblast cell lysis. J Ethnopharmacol 103(2):201–207

    Article  PubMed  Google Scholar 

  • Venma PK, Sharma A, Mathur A, Sharma P, Gupta RS, Joshi SC, Dixit VP (2002) Effect of Sarcostemma acidum stem extract on spermatogenesis in male albino rats. Asian J Androl 4(1):43–47

    PubMed  Google Scholar 

  • WHO (1996) Report of the WHO informal consultation on the evaluation on the testing of insecticides CTD/WHO PES/IC/96.1:69

  • Woradulayapinij W, Soonthornchareonnon N, Wiwat C (2005) In vitro HIV type 1 reverse transcriptase inhibitory activities of Thai medicinal plants and Canna indica L. rhizomes. J Ethnopharmacol 101(1–3):84–89

    Article  PubMed  Google Scholar 

  • Yadav R, Srivastava VK, Chandra R, Singh A (2002) Larvicidal activity of latex and stem bark of Euphorbia tirucalli plant on the mosquito Culex quinquefasciatus. J Commun Dis 34(4):264–269

    PubMed  Google Scholar 

Download references

Acknowledgements

The authors are grateful to C. Abdul Hakeem College Management, Dr. S. Mohammed Yousuff, Principal, Dr. Ahmed Najib, HOD of Zoology Department, and Dr. Sait Sahul Hameed, Reader in Zoology, for their help and suggestion.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Rahuman.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rahuman, A.A., Bagavan, A., Kamaraj, C. et al. Efficacy of larvicidal botanical extracts against Culex quinquefasciatus Say (Diptera: Culicidae). Parasitol Res 104, 1365–1372 (2009). https://doi.org/10.1007/s00436-009-1337-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-009-1337-9

Keywords

Navigation