Skip to main content

Advertisement

Log in

Evidence for multiple mitochondrial lineages of Fasciola hepatica (liver fluke) within infrapopulations from cattle and sheep

  • Original Paper
  • Published:
Parasitology Research Aims and scope Submit manuscript

    We’re sorry, something doesn't seem to be working properly.

    Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Abstract

The economic, veterinary, and medical impact of the parasite Fasciola hepatica, liver fluke, is difficult to alleviate due to increasing incidences of resistance to the principal anthelmintic drugs. These have occurred in widely separated regions. The rate of response to selection imposed by such drugs will be dependent on the genetic variation present in the F. hepatica gene pool, but this is at present unknown. We have assessed the genetic diversity of mitochondrial haplotypes found in the infrapopulation of flukes recovered from a calf of known provenance and from six other cattle and sheep hosts located in Ireland and four from elsewhere. Our results revealed that at least ten different mitochondrial composite PCR–restriction fragment length polymorphism haplotypes had been acquired by a single animal in 1 year, and there was comparable diversity in six other definitive hosts carrying field-acquired infections. The extent of divergence between these fluke lineages suggests that they predate the last ice age and, thus, cannot have developed in Northern Europe. A consequence of this high level of diversity is that there will be frequent selection for anthelmintic resistance and rapid responses to climatic changes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  • Adlard RD, Barker SC, Blair D, Cribb TH (1993) Comparison of the second internal transcribed spacer (ribosomal DNA) from populations and species of Fasciolidae (Digenea). Int J Parasitol 23:423–425

    Article  PubMed  CAS  Google Scholar 

  • Agatsuma T, Terasaki K, Yang L, Blair D (1994) Genetic variation in the triploids of Japanese Fasciola species, and relationships with other species in the genus. J Helminthol 68:181–186

    Article  PubMed  CAS  Google Scholar 

  • Anon (1995) Resistance to fluke drug found on Sligo farm. Ir Farmers J 18(March):2

    Google Scholar 

  • Blouin MS, Yowell CA, Courtney CH, Dame JB (1995) Host movement and the genetic structure of populations of parasitic nematodes. Genetics 141:1007–1014

    PubMed  CAS  Google Scholar 

  • Blouin MS, Lui J, Berry RE (1999) Life cycle variation and the genetic structure of nematode populations. Heredity 83:253–259

    Article  PubMed  CAS  Google Scholar 

  • Boray JC, Enigk K (1964) Laboratory studies on the survival and infectivity of Fasciola hepatica and Fasciola gigantica metacercariae. Z Tropenmed Parasitol 15:326–331

    Google Scholar 

  • Braisher TL, Gemmell NJ, Grenfell BT, Amos W (2004) Host isolation and patterns of genetic variability in three populations of Teladorsagia from sheep. Int J Parasitol 34:1197–1204

    Article  PubMed  Google Scholar 

  • Coles GC, Rhodes AC, Stafford KA (2000) Activity of closantel against adult triclabendazole-resistant Fasciola hepatica. Vet Rec 146:504

    PubMed  CAS  Google Scholar 

  • Cornell SJ, Isham VS, Smith G, Grenfell BT (2003) Spatial parasite transmission, drug resistance and the spread of rare genes. Proc Natl Acad Sci USA 100:7401–7405

    Article  PubMed  CAS  Google Scholar 

  • Curtis J, Sorensen RE, Minchella DJ (2002). Schistosome genetic diversity: the implications of population structure as detected with microsatellite markers. Parasitology 125:851–859

    Article  Google Scholar 

  • Dabo A, Durand P, Morand S, Diakite M, Langand J, Imbert-Establet D, Doumbo O, Jordane J (1997) Distribution and genetic diversity of Schistosoma haematobium within its bulinid intermediate hosts in Mali. Acta Trop 66:15–26

    Article  PubMed  CAS  Google Scholar 

  • Davies CM, Webster JP, Kruger G, Munatsi A, Ndamba J, Woolhouse MEJ (1999) Host–parasite population genetics: a cross-sectional comparison of Bulinus globosus and Schistosoma haematobium. Parasitology 119:295–302

    Article  PubMed  Google Scholar 

  • Dosay-Akbulut M, Trudgett A, Stanhope M (2005) Understanding genetic diversity in the liver fluke, Fasciola hepatica. Z Naturforsch 60c:774–778

    Google Scholar 

  • Gibson TE, Everett G (1972) The ecology of the free-living stages of Ostertagia circumcincta. Parasitology 64:451–460

    PubMed  CAS  Google Scholar 

  • Huang WY, He B, Wang CR, Zhu XQ (2004). Characterisation of Fasciola species from Mainland China by ITS-2 ribosomal DNA sequence. Vet Parasitol 120:75–83

    Article  PubMed  CAS  Google Scholar 

  • Hurtrez-Bousses S, Durand P, Jabbour-Zahab R, Guegan JF, Meunier C, Bargues MD, Mas-Coma S, Renaud F (2004) Isolation and characterisation of microsatellite markers in the liver fluke (Fasciola hepatica). Mol Ecol Notes 4:689–690

    Article  CAS  Google Scholar 

  • Irving JA, Spithill TW, Pike RN, Whisstock JC, Smooker PM (2003) The evolution of enzyme specificity in Fasciola spp. J Mol Evol 57:1–15

    Article  PubMed  CAS  Google Scholar 

  • Kaplan RM, Dame JB, Reddy GR, Courtney CH (1997) The prevalence of Fasciola hepatica in its snail intermediate host determined by DNA probe assay. Int J Parasitol 27:1585–1593

    Article  PubMed  CAS  Google Scholar 

  • Le TH, Blair D, McManus DP (2001) Complete DNA sequence and gene organization of the mitochondrial genome of the liverfluke, Fasciola hepatica L (Platyhelminthes, Trematoda). Parasitology 123:609–621

    Article  PubMed  CAS  Google Scholar 

  • Loftus RT, MacHugh DE, Bradley DG, Sharp PM, Cunningham P (1994) Evidence for two independent domestications of cattle. Proc Natl Acad Sci USA 91:2757–2761

    Article  PubMed  CAS  Google Scholar 

  • Lydeard C, Mulvey M, Aho JM, Kennedy PK (1989) Genetic variability among natural populations of the liver fluke Fascioloides magna in white-tailed deer, Odocoiles virginianus. Can J Zool 67:2021–2025

    Article  Google Scholar 

  • Mas-Coma S, Funatsu IR, Bargues MD (2001) Fasciola hepatica and lymnaeid snails occurring at a very high altitude in South America. Parasitology 123:S115–S127

    Article  PubMed  Google Scholar 

  • May RM, Anderson RM (1979) Population biology of infectious diseases: part II. Nature 280:455–461

    Article  PubMed  CAS  Google Scholar 

  • McIlroy D, Moran P, Bermingham E, Kornfield I (2000) REAP—an integrated environment for the manipulation and phylogenetic analyses of restriction data. J Hered 83:157–158

    Google Scholar 

  • Minchella DJ, Lewis FA, Sollenberger KA, Williams JA (1994) Genetic diversity of Schistosoma mansoni: quantifying strain heterogeneity using a polymorphic DNA element. Mol Biochem Parasitol 68:307–313

    Article  PubMed  CAS  Google Scholar 

  • Minchella DJ, Sollenberger KM, Pereira de Souza C (1995) Distribution of schistosome genetic diversity within molluscan intermediate hosts. Parasitology 111:217–220

    Article  PubMed  Google Scholar 

  • Mitchell GB (2002) Update on fasciolosis in cattle and sheep. In Pract 24:378–385

    Google Scholar 

  • Moll L, Gaasenbeek CPH, Vellema P, Borgsteede FHM (2000) Resistance of Fasciola hepatica against triclabendazole in cattle and sheep in the Netherlands. Vet Parasitol 91:153–158

    Article  PubMed  CAS  Google Scholar 

  • Morgan JAT, Dejond RJ, Adeoye GO, Ansa EDO, Barbosa CS, Brémond P, Cesari IM, Charbonnel N, Corrě LR, Coulibaly G, D’Andrea PS, de Souza CP, Deonhoff MJ, File S, Idris MA, Incani N, Jarne P, Karanja DMS, Kazibwe F, Kpikpi J, Lwambo NJS, Mabaye A, Magalhaes LA, Makundi A, Moné H, Mouahid G, Muchemi GM, Mungai BN, Séne M, Southgate V, Tchuenté LAT, Théron A, Yousif F, Zanotti-Magalhães EM, Mkoji JM, Loker ES (2005) Origin and diversification of the human parasite Schistosoma mansoni. Mol Ecol 14:3889–3902

    Article  PubMed  CAS  Google Scholar 

  • Mulvey M, Aho JM, Lydeard C, Leberg PL, Smith MH (1991) Comparative population genetic structure of a parasite (Fascioloides magna) and its definitive host. Evolution 45:1628–1640

    Article  Google Scholar 

  • Nei M, Li WH (1979) Mathematical model for studying genetic variation in terms of restriction nucleases. Proc Natl Acad Sci USA 76:5269–5273

    Article  PubMed  CAS  Google Scholar 

  • Ollerenshaw CB (1967) Some observations on the epidemiology and control of fascioliasis in Wales. In: Proceedings of the second international liverfluke colloquium. Merck Sharp Dohme International, Wageningen, pp 103–125

  • Overend DJ, Bowen FL (1995) Resistance of Fasciola hepatica to triclabendazole. Aust Vet J 72:275–276

    Article  PubMed  CAS  Google Scholar 

  • Prugnolle F, Liu H, de Meeus T, Balloux F (2005) Population genetics of complex life-cycle parasites: an illustration with trematodes. Int J Parasitol 35:255–263

    Article  PubMed  Google Scholar 

  • Ross JG (1967) An epidemiological study of fasciolosis in sheep. Vet Rec 80:214–217

    Google Scholar 

  • Schneider S, Roessli D, Excoffier L (2000) Arlequin ver. 2000: a software for population genetic analysis. Genetics and Biometry Laboratory, University of Geneva, Switzerland

    Google Scholar 

  • Semyenova SK, Morozova EV, Chrisanfova GC, Asatrian AM, Movsessian SO, Ryskov AP (2003) RAPD variability and genetic diversity in two populations of the liver fluke, Fasciola hepatica. Acta Parasitol 48:125–130

    CAS  Google Scholar 

  • Semyenova SK, Morozova EV, Chrisanfova, GG, Gorokhov VV, Arkhipov IA, Moskvin, AS Movsessyan SO, Ryskov AP (2006) Genetic differentiation in eastern European and western Asian populations of the liver fluke, Fasciola hepatica, as revealed by mitochondrial Nad1 and Cox1 genes. J Parasitol 92:525–530

    Article  PubMed  CAS  Google Scholar 

  • Sire C, Durand P, Pointier J-P, Theron A (2001) Genetic diversity of Schistosoma mansoni within and among individual hosts (Rattus rattus): infrapopulation differentiation at microspatial scale. Int J Parasitol 31:1609–1616

    Article  PubMed  CAS  Google Scholar 

  • Troell K, Engström A, Morrison DA, Mattsson JG, Höglund J (2006) Global patterns reveal strong population structure in Haemonchus contortus, a nematode parasite of domesticated ruminants. Int J Parasitol 36:1305–1316

    Article  PubMed  Google Scholar 

  • Walker SM, McKinstry B, Boray JC, Brennan GP, Trudgett A, Hoey EM, Fletcher H, Fairweather I (2004) Response of two isolates of Fasciola hepatica to treatment with triclabendazole in vivo and in vitro. Parasitol Res 94:427–438

    Article  PubMed  CAS  Google Scholar 

  • Walker SM, Hoey EM, Fletcher H, Brennan GP, Fairweather I, Trudgett A (2006) Stage-specific differences in fecundity over the life cycle of two characterised isolates of the liver fluke, Fasciola hepatica. Parasitology 133:209–216

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgement

This study was supported by the Department of Agriculture and Rural Development (Northern Ireland). S.M.W. was supported by a postgraduate studentship from the Department of Agriculture and Rural Development (Northern Ireland). V.K was supported by a Marie Curie Fellowship. We would like to thank Dr R. Hynes for the laboratory support. All experiments described in this study comply with the current laws of the United Kingdom and European Union.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. Trudgett.

Electronic Supplementary Material

Below is the link to the electronic supplementary material:

ESM Table 1

Mitochondrial DNA primer sequences, MgCl2 and Tm for specific primer sets, products size details, and restriction enzymes used to screen the Fasciola hepatica mitochondrial genome (DOC 31 kb)

ESM Table 2

Restriction profiles for the Fasciola hepatica QUB FhmtDNACOX3/ND4, QUB FhmtDNAATP6/ND1, and QUB FhmtDNACOX1/l–rRNA mtDNA regions. Sizes in base pairs (bp) of restriction morphs are shown. The bold values indicate fragments not actually observed but deduced on the basis of the loss of a fragment in relation to the sum of the sizes of the observed fragments of a given morph. (1) QUB FhmtDNACOX3/ND4 restriction morphs, (2) QUB FhmtDNAATP6/ND1 restriction morphs, (3) QUB FhmtDNACOX1/l–rRNA restriction morphs (DOC 98 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Walker, S.M., Prodöhl, P.A., Fletcher, H.L. et al. Evidence for multiple mitochondrial lineages of Fasciola hepatica (liver fluke) within infrapopulations from cattle and sheep. Parasitol Res 101, 117–125 (2007). https://doi.org/10.1007/s00436-006-0440-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00436-006-0440-4

Keywords

Navigation