Skip to main content
Log in

The functional role of peroxiredoxin 3 in reactive oxygen species, apoptosis, and chemoresistance of cancer cells

  • Review – Cancer Research
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Purpose

The mammalian peroxiredoxin (PRX) family contains six members that provide antioxidant defense in different cell types by removing reactive oxygen species (ROS) through conserved active cysteines. Different from other members, PRX3 is predominantly located in mitochondria, a major apoptosis mediator. The purpose of this review is to summarize the findings on PRX3 concerning its role in ROS removal, apoptosis, and chemoresistance of cancer cells.

Methods

The relevant literature from PubMed and Medline databases is reviewed in this article (1994-2014).

Results

Because of fast growth and relatively low supply of oxygen in cancer cells, ROS production from mitochondria is exaggerated to an extent that overwhelms cellular antioxidant defenses resulting in oxidative stress. As an active responder to oxidative stress, PRX3 is accordingly up-regulated in cancer cells to remove cellular ROS and inhibit apoptosis, which provides a favorable microenvironment for cell proliferation.

Conclusion

Since most of chemotherapy or radiotherapy for cancers is through ROS increase and apoptotic induction, PRX3 might be involved in the chemotherapeutic resistance of cancers.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  • Alexandre J, Batteux F, Nicco C, Chéreau C, Laurent A, Guillevin L, Weill B, Goldwasser F (2006) Accumulation of hydrogen peroxide is an early and crucial step for paclitaxel-induced cancer cell death both in vitro and in vivo. Int J Cancer 119:41–48

    Article  CAS  PubMed  Google Scholar 

  • Araki M, Nanri H, Ejima K, Murasato Y, Fujiwara T, Nakashima Y, Ikeda M (1999) Antioxidant function of the mitochondrial protein SP-22 in the cardiovascular system. J Biol Chem 274:2271–2278

    Article  CAS  PubMed  Google Scholar 

  • Bae SH, Woo HA, Sung SH, Lee HE, Lee SK, Kil IS, Rhee SG (2009) Induction of sulfiredoxin via an Nrf2-dependent pathway and hyperoxidation of peroxiredoxin III in the lungs of mice exposed to hyperoxia. Antioxid Redox Signal 11:937–948

    Article  CAS  PubMed  Google Scholar 

  • Bae SH, Sung SH, Lee HE, Kang HT, Lee SK, Oh SY, Woo HA, Kil IS, Rhee SG (2012) Peroxiredoxin III and sulfiredoxin together protect mice from pyrazole-induced oxidative liver injury. Antioxid Redox Signal 17:1351–1361

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Basu A, Banerjee H, Rojas H, Martinez SR, Roy S, Jia Z, Lilly MB, De León M, Casiano CA (2011) Differential expression of peroxiredoxins in prostate cancer: consistent upregulation of PRDX3 and PRDX4. Prostate 71:755–765

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Brown KK, Eriksson SE, Arnér ES, Hampton MB (2008) Mitochondrial peroxiredoxin 3 is rapidly oxidized in cells treated with isothiocyanates. Free Radic Biol Med 45:494–502

    Article  CAS  PubMed  Google Scholar 

  • Brown KK, Cox AG, Hampton MB (2010) Mitochondrial respiratory chain involvement in peroxiredoxin 3 oxidation by phenethyl isothiocyanate and auranofin. FEBS Lett 584:1257–1262

    Article  CAS  PubMed  Google Scholar 

  • Chae HZ, Robison K, Poole LB, Church G, Storz G, Rhee SG (1994) Cloning and sequencing of thiol-specific antioxidant from mammalian brain: alkyl hydroperoxide reductase and thiol-specific antioxidant define a large family of antioxidant enzymes. Proc Natl Acad Sci USA 91:7017–7021

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Chae HZ, Kim HJ, Kang SW, Rhee SG (1999) Characterization of three isoforms of mammalian peroxiredoxin that reduce peroxides in the presence of thioredoxin. Diabetes Res Clin Pract 45:101–112

    Article  CAS  PubMed  Google Scholar 

  • Chang TS, Cho CS, Park S, Yu S, Kang SW, Rhee SG (2004a) a mitochondrion-specific peroxidase, regulates apoptotic signaling by mitochondria. J Biol Chem 279:41975–41984

    Article  CAS  PubMed  Google Scholar 

  • Chang TS, Jeong W, Woo HA, Lee SM, Park S, Rhee SG (2004b) Characterization of mammalian sulfiredoxin and its reactivation of hyperoxidized peroxiredoxin through reduction of cysteine sulfinic acid in the active site to cysteine. J Biol Chem 279:50994–51001

    Article  CAS  PubMed  Google Scholar 

  • Chen C, Cai S, Wang G, Cao X, Yang X, Luo X, Feng Y, Hu J (2013) c-Myc enhances colon cancer cell-mediated angiogenesis through the regulation of HIF-1α. Biochem Biophys Res Commun 430:505–511

    Article  CAS  PubMed  Google Scholar 

  • Chiribau CB, Cheng L, Cucoranu IC, Yu YS, Clempus RE, Sorescu D (2008) FOXO3A regulates peroxiredoxin III expression in human cardiac fibroblasts. J Biol Chem 283:8211–8217

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Choi JH, Kim TN, Kim S, Baek SH, Kim JH, Lee SR, Kim JR (2002) Overexpression of mitochondrial thioredoxin reductase and peroxiredoxin III in hepatocellular carcinomas. Anticancer Res 22:3331–3335

    CAS  PubMed  Google Scholar 

  • Chua PJ, Lee EH, Yu Y, Yip GW, Tan PH, Bay BH (2010) Silencing the peroxiredoxin III gene inhibits cell proliferation in breast cancer. Int J Oncol 36:359–364

    CAS  PubMed  Google Scholar 

  • Cox AG, Brown KK, Arner ES, Hampton MB (2008a) The thioredoxin reductase inhibitor auranofin triggers apoptosis through a Bax/Bak-dependent process that involves peroxiredoxin 3 oxidation. Biochem Pharmacol 76:1097–1109

    Article  CAS  PubMed  Google Scholar 

  • Cox AG, Pullar JM, Hughes G, Ledgerwood EC, Hampton MB (2008b) Oxidation of mitochondrial peroxiredoxin 3 during the initiation of receptor-mediated apoptosis. Free Radic Biol Med 44:1001–1009

    Article  CAS  PubMed  Google Scholar 

  • Cunniff B, Benson K, Stumpff J, Newick K, Held P, Taatjes D, Joseph J, Kalyanaraman B, Heintz NH (2013) Mitochondrial-targeted nitroxides disrupt mitochondrial architecture and inhibit expression of peroxiredoxin 3 and FOXM1 in malignant mesothelioma cells. J Cell Physiol 228:835–845

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • De Simoni S, Goemaere J, Knoops B (2008) Silencing of peroxiredoxin 3 and peroxiredoxin 5 reveals the role of mitochondrial peroxiredoxins in the protection of human neuroblastoma SH-SY5Y cells toward MPP+. Neurosci Lett 433:219–224

    Article  PubMed  Google Scholar 

  • De Smaele E, Zazzeroni F, Papa S, Nguyen DU, Jin R, Jones J, Cong R, Franzoso G (2001) Induction of gadd45beta by NF-kappaB downregulates pro-apoptotic JNK signalling. Nature 414:308–313

    Article  PubMed  Google Scholar 

  • Doe MR, Ascano JM, Kaur M, Cole MD (2012) Myc posttranscriptionally induces HIF1 protein and target gene expression in normal and cancer cells. Cancer Res 72:949–957

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Drechsel DA, Patel M (2010) Respiration-dependent H2O2 removal in brain mitochondria via the thioredoxin/peroxiredoxin system. J Biol Chem 285:27850–27858

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Duan J, Lang Y, Song C, Xiong J, Wang Y, Yan Y (2013) siRNA targeting of PRDX3 enhances cisplatin—induced apoptosis in ovarian cancer cells through the suppression of the NF–κB signaling pathway. Mol Med Rep 7:1688–1694

    CAS  PubMed  Google Scholar 

  • Fels DR, Koumenis C (2005) HIF-1alpha and p53: the ODD couple? Trends Biochem Sci 30:426–429

    Article  CAS  PubMed  Google Scholar 

  • Ferber EC, Peck B, Delpuech O, Bell GP, East P, Schulze A (2012) FOXO3a regulates reactive oxygen metabolism by inhibiting mitochondrial gene expression. Cell Death Differ 19:968–979

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Guo QM, Malek RL, Kim S, Chiao C, He M, Ruffy M, Sanka K, Lee NH, Dang CV, Liu ET (2000) Identification of c-myc responsive genes using rat cDNA microarray. Cancer Res 60:5922–5928

    CAS  PubMed  Google Scholar 

  • Halasi M, Zhao H, Dahari H, Bhat UG, Gonzalez EB, Lyubimo AV, Tonetti DA, Gartel AL (2010) Thiazole antibiotics against breast cancer. Cell Cycle 9:1214–1217

    Article  CAS  PubMed  Google Scholar 

  • Han S, Shen H, Jung M, Hahn BS, Jin BK, Kang I, Ha J, Choe W (2012) Expression and prognostic significance of human peroxiredoxin isoforms in endometrial cancer. Oncol Lett 3:1275–1279

    PubMed Central  PubMed  Google Scholar 

  • Hanschmann EM, Lönn ME, Schütte LD, Funke M, Godoy JR, Eitner S, Hudemann C, Lillig CH (2010) Both thioredoxin 2 and glutaredoxin 2 contribute to the reduction of the mitochondrial 2-Cys peroxiredoxin Prx3. J Biol Chem 285:40699–40705

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • He HC, Zhu JG, Chen XB, Chen SM, Han ZD, Dai QS, Ling XH, Fu X, Lin ZY, Deng YH, Qin GQ, Cai C, Chen JH, Zhong WD (2012) MicroRNA-23b downregulates peroxiredoxin III in human prostate cancer. FEBS Lett 586:2451–2458

    Article  CAS  PubMed  Google Scholar 

  • Hu JX, Gao Q, Li L (2013) Peroxiredoxin 3 is a novel marker for cell proliferation in cervical cancer. Biomed Rep 1:228–230

    PubMed Central  CAS  PubMed  Google Scholar 

  • Jäschke A, Mi H, Tropschug M (1998) Human T cell cyclophilin18 binds to thiol-specific antioxidant protein Aop1 and stimulates its activity. J Mol Biol 277:763–769

    Article  PubMed  Google Scholar 

  • Jensen KS, Binderup T, Jensen KT, Therkelsen I, Borup R, Nilsson E, Multhaupt H, Bouchard C, Quistorff B, Kjaer A, Landberg G, Staller P (2011) FoxO3A promotes metabolic adaptation to hypoxia by antagonizing Myc function. EMBO J 30:4554–4570

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Jeong HJ, Jeong HW, Song SS, Kang JW, Seo JH, Lee YH, Lee KS, Kim DW (2011) Upregulation of peroxiredeoxin III in the hippocampus of acute immobilization stress model rats and the Foxo3a-dependent expression in PC12 cells. Cell Mol Neurobiol 31:1041–1046

    Article  CAS  PubMed  Google Scholar 

  • Kalinina EV, Berezov TT, Shtil’ AA, Chernov NN, Glazunova VA, Novichkova MD, Nurmuradov NK (2012) Expression of peroxiredoxin 1, 2, 3, and 6 genes in cancer cells during drug resistance formation. Bull Exp Biol Med 153:878–881

    Article  CAS  PubMed  Google Scholar 

  • Karihtala P, Mäntyniemi A, Kang SW, Kinnula VL, Soini Y (2003) Peroxiredoxins in breast carcinoma. Clin Cancer Res 9:3418–3424

    CAS  PubMed  Google Scholar 

  • Kim YJ, Ahn JY, Liang P, Ip C, Zhang Y, Park YM (2007) Human prx1 gene is a target of Nrf2 and is up-regulated by hypoxia/reoxygenation: implication to tumor biology. Cancer Res 67:546–554

    Article  CAS  PubMed  Google Scholar 

  • Kim K, Yu M, Han S, Oh I, Choi YJ, Kim S, Yoon K, Jung M, Choe W (2009) Expression of human peroxiredoxin isoforms in response to cervical carcinogenesis. Oncol Rep 21:1391–1396

    CAS  PubMed  Google Scholar 

  • Kim YS, Lee HL, Lee KB, Park JH, Chung WY, Lee KS, Sheen SS, Park KJ, Hwang SC (2011) Nuclear factor E2-related factor 2 dependent overexpression of sulfiredoxin and peroxiredoxin III in human lung cancer. Korean J Intern Med 26:304–313

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Kinnula VL, Lehtonen S, Sormunen R, Kaarteenaho-Wiik R, Kang SW, Rhee SG, Soini Y (2002) Overexpression of peroxiredoxins I, II, III, V, and VI in malignant mesothelioma. J Pathol 196:316–323

    Article  CAS  PubMed  Google Scholar 

  • Lee SP, Hwang YS, Kim YJ, Kwon KS, Kim HJ, Kim K, Chae HZ (2001) Cyclophilin a binds to peroxiredoxins and activates its peroxidase activity. J Biol Chem 276:29826–29832

    Article  CAS  PubMed  Google Scholar 

  • Li KK, Pang JC, Lau KM, Zhou L, Mao Y, Wang Y, Poon WS, Ng HK (2013a) MiR-383 is downregulated in medulloblastoma and targets peroxiredoxin 3 (PRDX3). Brain Pathol 23:413–425

    Article  CAS  PubMed  Google Scholar 

  • Li L, Zhang YG, Chen CL (2013b) Anti-apoptotic role of peroxiredoxin III in cervical cancer cells. FEBS Open Bio. 3:51–54

    Article  PubMed Central  PubMed  Google Scholar 

  • Lin JY, Tserng KY, Chen CC, Lin LT, Tung TC (1970) Abrin and ricin: new anti-tumour substances. Nature 227:292–293

    Article  CAS  PubMed  Google Scholar 

  • Liu L, Yang C, Yuan J, Chen X, Xu J, Wei Y, Yang J, Lin G, Yu L (2005) RPK118, a PX domain-containing protein, interacts with peroxiredoxin-3 through pseudo-kinase domains. Mol Cells 19:39–45

    Article  PubMed  Google Scholar 

  • Liu X, Feng R, Du L (2010) The role of enoyl-CoA hydratase short chain 1 and peroxiredoxin 3 in PP2-induced apoptosis in human breast cancer MCF-7 cells. FEBS Lett 584:3185–3192

    Article  CAS  PubMed  Google Scholar 

  • Madeira JM, Gibson DL, Kean WF, Klegeris A (2012) The biological activity of auranofin: implications for novel treatment of diseases. Inflammopharmacology 20:297–306

    Article  CAS  PubMed  Google Scholar 

  • Marzano C, Gandin V, Folda A, Scutari G, Bindoli A, Rigobello MP (2007) Inhibition of thioredoxin reductase by auranofin induces apoptosis in cisplatin-resistant human ovarian cancer cells. Free Radic Biol Med 42:872–881

    Article  CAS  PubMed  Google Scholar 

  • Masaki M, Ikeda A, Shiraki E, Oka S, Kawasaki T (2003) Mixed lineage kinase LZK and antioxidant protein-1 activate NF-kappaB synergistically. Eur J Biochem 270:76–83

    Article  CAS  PubMed  Google Scholar 

  • McDonald C, Muhlbauer J, Perlmutter G, Taparra K, Phelan SA (2014) Peroxiredoxin proteins protect MCF-7 breast cancer cells from doxorubicin-induced toxicity. Int J Oncol 45:219–226

    CAS  PubMed  Google Scholar 

  • Miranda-Vizuete A, Damdimopoulos AE, Spyrou G (2000) The mitochondrial thioredoxin system. Antioxid Redox Signal 2:801–810

    Article  CAS  PubMed  Google Scholar 

  • Miyamoto N, Izumi H, Miyamoto R, Kondo H, Tawara A, Sasaguri Y, Kohno K (2011) Quercetin induces the expression of peroxiredoxins 3 and 5 via the Nrf2/NRF1 transcription pathway. Investig Ophthalmol Vis Sci 52:1055–1063

    Article  CAS  Google Scholar 

  • Mu ZM, Yin XY, Prochownik EV (2002) Pag, a putative tumor suppressor, interacts with the Myc Box II domain of c-Myc and selectively alters its biological function and target gene expression. J Biol Chem 277:43175–43184

    Article  CAS  PubMed  Google Scholar 

  • Newick K, Cunniff B, Preston K, Held P, Arbiser J, Pass H, Mossman B, Shukla A, Heintz N (2012) Peroxiredoxin 3 is a redox-dependent target of thiostrepton in malignant mesothelioma cells. PLoS One 7:e39404

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Noh DY, Ahn SJ, Lee RA, Kim SW, Park IA, Chae HZ (2001) Overexpression of peroxiredoxin in human breast cancer. Anticancer Res 21:2085–2090

    CAS  PubMed  Google Scholar 

  • Noh YH, Baek JY, Jeong W, Rhee SG, Chang TS (2009) Sulfiredoxin translocation into mitochondria plays a crucial role in reducing hyperoxidized peroxiredoxin III. J Biol Chem 284:8470–8477

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Nonn L, Berggren M, Powis G (2003) Increased expression of mitochondrial peroxiredoxin-3 (thioredoxin peroxidase-2) protects cancer cells against hypoxia and drug-induced hydrogen peroxide-dependent apoptosis. Mol Cancer Res 1:682–689

    CAS  PubMed  Google Scholar 

  • Obacz J, Pastorekova S, Vojtesek B, Hrstka R (2013) Cross-talk between HIF and p53 as mediators of molecular responses to physiological and genotoxic stresses. Mol Cancer 12:93

    Article  PubMed Central  PubMed  Google Scholar 

  • Okuyama H, Endo H, Akashika T, Kato K, Inoue M (2010) Downregulation of c-MYC protein levels contributes to cancer cell survival under dual deficiency of oxygen and glucose. Cancer Res 70:10213–10223

    Article  CAS  PubMed  Google Scholar 

  • Park JH, Kim YS, Lee HL, Shim JY, Lee KS, Oh YJ, Shin SS, Choi YH, Park KJ, Park RW, Hwang SC (2006) Expression of peroxiredoxin and thioredoxin in human lung cancer and paired normal lung. Respirology 11:269–275

    Article  PubMed  Google Scholar 

  • Pham LV, Tamayo AT, Yoshimura LC, Lo P, Ford RJ (2003) Inhibition of constitutive NF-kappa B activation in mantle cell lymphoma B cells leads to induction of cell cycle arrest and apoptosis. J Immunol 171:88–95

    Article  CAS  PubMed  Google Scholar 

  • Popowich DA, Vavra AK, Walsh CP, Bhikhapurwala HA, Rossi NB, Jiang Q, Aalami OO, Kibbe MR (2010) Regulation of reactive oxygen species by p53: implications for nitric oxide-mediated apoptosis. Am J Physiol Heart Circ Physiol 298:H2192–H2200

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Qiao B, Wang J, Xie J, Niu Y, Ye S, Wan Q, Ye Q (2012) Detection and identification of peroxiredoxin 3 as a biomarker in hepatocellular carcinoma by a proteomic approach. Int J Mol Med 29:832–840

    CAS  PubMed  Google Scholar 

  • Rabilloud T, Heller M, Rigobello MP, Bindoli A, Aebersold R, Lunardi J (2001) The mitochondrial antioxidant defence system and its response to oxidative stress. Proteomics 1:1105–1110

    Article  CAS  PubMed  Google Scholar 

  • Sablina AA, Budanov AV, Ilyinskaya GV, Agapova LS, Kravchenko JE, Chumakov PM (2005) The antioxidant function of the p53 tumor suppressor. Nat Med 11:1306–1313

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Sena LA, Chandel NS (2012) Physiological roles of mitochondrial reactive oxygen species. Mol Cell 48:158–167

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shen C, Nathan C (2002) Nonredundant antioxidant defense by multiple two-cysteine peroxiredoxins in human prostate cancer cells. Mol Med 8:95–102

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Shih SF, Wu YH, Hung CH, Yang HY, Lin JY (2001) Abrin triggers cell death by inactivating a thiol-specific antioxidant protein. J Biol Chem 276:21870–21877

    Article  CAS  PubMed  Google Scholar 

  • Singh M, Sharma H, Singh N (2007) Hydrogen peroxide induces apoptosis in HeLa cells through mitochondrial pathway. Mitochondrion 7:367–373

    Article  CAS  PubMed  Google Scholar 

  • Song IS, Kim HK, Jeong SH, Lee SR, Kim N, Rhee BD, Ko KS, Han J (2011) Mitochondrial peroxiredoxin III is potential target for cancer therapy. Int J Mol Sci 12:7163–7185

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Srinivas P, Gopinath G, Banerji A, Dinakar A, Srinivas G (2004) Plumbagin induces reactive oxygen species, which mediate apoptosis in human cervical cancer cells. Mol Carcinog 40:201–211

    Article  CAS  PubMed  Google Scholar 

  • Talks KL, Turley H, Gatter KC, Maxwell PH, Pugh CW, Ratcliffe PJ, Harris AL (2000) The expression and distribution of the hypoxia-inducible factors HIF-1alpha and HIF-2alpha in normal human tissues, cancers, and tumor-associated macrophages. Am J Pathol 157:411–421

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Tehan L, Taparra K, Phelan S (2013) Peroxiredoxin overexpression in MCF-7 breast cancer cells and regulation by cell proliferation and oxidative stress. Cancer Investig 31:374–384

    Article  CAS  Google Scholar 

  • Tsuji K, Copeland NG, Jenkins NA, Obinata M (1995) Mammalian antioxidant protein complements alkylhydroperoxide reductase (ahpC) mutation in Escherichia coli. Biochem J 307:377–381

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Vivas-Mejía PE, Ozpolat B, Chen X, Lopez-Berestein G (2009) Downregulation of the c-MYC target gene, peroxiredoxin III, contributes to arsenic trioxide-induced apoptosis in acute promyelocytic leukemia. Int J Cancer 125:264–275

    Article  PubMed  Google Scholar 

  • Wang XY, Wang HJ, Li XQ (2013) Peroxiredoxin III protein expression is associated with platinum resistance in epithelial ovarian cancer. Tumour Biol 34:2275–2281

    Article  CAS  PubMed  Google Scholar 

  • Wang YG, Li L, Liu CH, Hong S, Zhang MJ (2014) Peroxiredoxin 3 is resistant to oxidation-induced apoptosis of Hep-3b cells. Clin Transl Oncol 16:561–566

    Article  CAS  PubMed  Google Scholar 

  • Watabe S, Hiroi T, Yamamoto Y, Fujooka Y, Hasegawa H, Yago N, Takahashi SY (1997) SP-22 is a thioredoxin-dependent peroxide reductase in mitochondria. Eur J Biochem 249:52–60

    Article  CAS  PubMed  Google Scholar 

  • Whitaker HC, Patel D, Howat WJ, Warren AY, Kay JD, Sangan T, Marioni JC, Mitchell J, Aldridge S, Luxton HJ, Massie C, Lynch AG, Neal DE (2013) Peroxiredoxin-3 is overexpressed in prostate cancer and promotes cancer cell survival by protecting cells from oxidative stress. Br J Cancer 109:983–993

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Wonsey DR, Zeller KI, Dang CV (2002) The c-Myc target gene PRDX3 is required for mitochondrial homeostasis and neoplastic transformation. Proc Natl Acad Sci USA 99:6649–6654

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Woo HA, Jeong W, Chang TS, Park KJ, Park SJ, Yang JS, Rhee SG (2005) Reduction of cysteine sulfinic acid by sulfiredoxin is specific to 2-cys peroxiredoxins. J Biol Chem 280:3125–3128

    Article  CAS  PubMed  Google Scholar 

  • Wu XY, Fu ZX, Wang XH (2010) Peroxiredoxins in colorectal neoplasms. Histol Histopathol 25:1297–1303

    CAS  PubMed  Google Scholar 

  • Xia LM, Huang WJ, Wang B, Liu M, Zhang Q, Yan W, Zhu Q, Luo M, Zhou ZZ, Tian DA (2009) Transcriptional up-regulation of FoxM1 in response to hypoxia is mediated by HIF-1. J Cell Biochem 106:247–256

    Article  CAS  PubMed  Google Scholar 

  • Yamamoto T, Matsui Y, Natori S, Obinata M (1989) Cloning of a housekeeping-type gene (MER5) preferentially expressed in murine erythroleukemia cells. Gene 80:337–343

    Article  CAS  PubMed  Google Scholar 

  • Zhang H, Gao P, Fukuda R, Kumar G, Krishnamachary B, Zeller KI, Dang CV, Semenza GL (2007) HIF-1 inhibits mitochondrial biogenesis and cellular respiration in VHL-deficient renal cell carcinoma by repression of C-MYC activity. Cancer Cell 11:407–420

    Article  CAS  PubMed  Google Scholar 

  • Zhang B, Wang Y, Su Y (2009) Peroxiredoxins, a novel target in cancer radiotherapy. Cancer Lett 286:154–160

    Article  CAS  PubMed  Google Scholar 

  • Zhong H, De Marzo AM, Laughner E, Lim M, Hilton DA, Zagzag D, Buechler P, Isaacs WB, Semenza GL, Simons JW (1999) Overexpression of hypoxia-inducible factor 1alpha in common human cancers and their metastases. Cancer Res 59:5830–5835

    CAS  PubMed  Google Scholar 

Download references

Conflict of interest

The authors declare that there is no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lianqin Li.

Additional information

Lianqin Li and Ai-Qun Yu have contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Li, L., Yu, AQ. The functional role of peroxiredoxin 3 in reactive oxygen species, apoptosis, and chemoresistance of cancer cells. J Cancer Res Clin Oncol 141, 2071–2077 (2015). https://doi.org/10.1007/s00432-015-1916-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-015-1916-3

Keywords

Navigation