Skip to main content

Advertisement

Log in

Pathogenesis of malignant pleural mesothelioma and the role of environmental and genetic factors

  • Review
  • Published:
Journal of Cancer Research and Clinical Oncology Aims and scope Submit manuscript

Abstract

Background

Malignant pleural mesothelioma (MPM) is a rare and aggressive tumor for which no effective therapy exists despite the discovery of many possible molecular and genetic targets. The late stage of MPM diagnosis and the long latency that exist between some exposures and diagnosis have made it difficult to comprehensively evaluate the role of risk factors and their downstream molecular effects.

Methods

This manuscript is a review of current literature about the pathogenesis of malignant mesothelioma. In this overview, current published studies concerning pathogenesis of malignant mesothelioma are reviewed, with insights into its etiology and pathogenesis. We searched pubmed using the following subjects: mesothelioma, radiation, genetics, pediatric malignant mesothelioma, SV40 virus, and growth factors. We selected 350 valuable articles of which 152 sources were used to complete this review.

Conclusion

Many risk factors for MPM development have been recognized including environmental exposures, genetic susceptibility, viral contamination, and radiation. In this review, we discuss the current molecular and genetic contributors to MPM pathogenesis and the risk factors associated with these carcinogenic processes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Abutaily AS, Collins JE, Roche WR (2003) Cadherins, catenins and APC in pleural malignant mesothelioma. J Pathol 201(3):355–362. doi:10.1002/path.1458

    PubMed  CAS  Google Scholar 

  • Adams VI, Unni KK (1984) Diffuse malignant mesothelioma of pleura: diagnostic criteria based on an autopsy study. Am J Clin Pathol 82(1):15–23

    PubMed  CAS  Google Scholar 

  • Adamson IY, Bakowska J (2001) KGF and HGF are growth factors for mesothelial cells in pleural lavage fluid after intratracheal asbestos. Exp Lung Res 27(7):605–616. doi:10.1080/019021401753181854

    PubMed  CAS  Google Scholar 

  • Altomare DA, Vaslet CA, Skele KL, De Rienzo A, Devarajan K, Jhanwar SC et al (2005) A mouse model recapitulating molecular features of human mesothelioma. Cancer Res 65(18):8090–8095. doi:10.1158/0008-5472.CAN-05-2312

    PubMed  CAS  Google Scholar 

  • Anderson KA, Hurley WC, Hurley BT, Ohrt DW (1985) Malignant pleural mesothelioma following radiotherapy in a 16-year-old boy. Cancer 56(2):273–276. doi:10.1002/1097-0142(19850715)56:2<273::AID-CNCR2820560212>3.0.CO;2-0

    PubMed  CAS  Google Scholar 

  • Antman KH, Ruxer RL Jr, Aisner J, Vawter G (1984) Mesothelioma following Wilms’ tumor in childhood. Cancer 54(2):367–369. doi:10.1002/1097-0142(19840715)54:2<367::AID-CNCR2820540232>3.0.CO;2-Y

    PubMed  CAS  Google Scholar 

  • Apostolou S, De Rienzo A, Murthy SS, Jhanwar SC, Testa JR (1999) Absence of BCL10 mutations in human malignant mesothelioma. Cell 97(6):684–686. doi:10.1016/S0092-8674(02)09765-9 discussion 686–688

    PubMed  CAS  Google Scholar 

  • Ascoli V, Cavone D, Merler E, Barbieri PG, Romeo L, Nardi F et al (2007) Mesothelioma in blood related subjects: report of 11 clusters among 1954 Italy cases and review of the literature. Am J Ind Med 50(5):357–369. doi:10.1002/ajim.20451

    PubMed  Google Scholar 

  • Asplund T, Versnel MA, Laurent TC, Heldin P (1993) Human mesothelioma cells produce factors that stimulate the production of hyaluronan by mesothelial cells and fibroblasts. Cancer Res 53(2):388–392

    PubMed  CAS  Google Scholar 

  • Ault JG, Cole RW, Jensen CG, Jensen LC, Bachert LA, Rieder CL (1995) Behavior of crocidolite asbestos during mitosis in living vertebrate lung epithelial cells. Cancer Res 55(4):792–798

    PubMed  CAS  Google Scholar 

  • Aung W, Hasegawa S, Furukawa T, Saga T (2007) Potential role of ferritin heavy chain in oxidative stress and apoptosis in human mesothelial and mesothelioma cells: implications for asbestos-induced oncogenesis. Carcinogenesis 28(9):2047–2052

    PubMed  CAS  Google Scholar 

  • Austin MB, Fechner RE, Roggli VL (1986) Pleural malignant mesothelioma following Wilms’ tumor. Am J Clin Pathol 86(2):227–230

    PubMed  CAS  Google Scholar 

  • Babcock TL, Powell DH, Bothwell RS (1976) Radiation-induced peritoneal mesothelioma. J Surg Oncol 8(5):369–372. doi:10.1002/jso.2930080503

    PubMed  CAS  Google Scholar 

  • Balsara BR, Bell DW, Sonoda G, De Rienzo A, du Manoir S, Jhanwar SC et al (1999) Comparative genomic hybridization and loss of heterozygosity analyses identify a common region of deletion at 15q11.1–15 in human malignant mesothelioma. Cancer Res 59(2):450–454

    PubMed  CAS  Google Scholar 

  • Barbanti-Brodano G, Sabbioni S, Martini F, Negrini M, Corallini A, Tognon M (2004) Simian virus 40 infection in humans and association with human diseases: results and hypotheses. Virology 318(1):1–9. doi:10.1016/j.virol.2003.09.004

    PubMed  CAS  Google Scholar 

  • Batra S, Shi Y, Kuchenbecker KM, He B, Reguart N, Mikami I et al (2006) Wnt inhibitory factor-1, a Wnt antagonist, is silenced by promoter hypermethylation in malignant pleural mesothelioma. Biochem Biophys Res Commun 342(4):1228–1232. doi:10.1016/j.bbrc.2006.02.084

    PubMed  CAS  Google Scholar 

  • Battifora H (1989) The Pleura. In: Sternberg SS (ed) Diagnostic Surgical Pathology. Oxford University Press, Oxford, pp 828

    Google Scholar 

  • Bertino P, Marconi A, Palumbo L, Bruni BM, Barbone D, Germano S et al (2007) Erionite and asbestos differently cause transformation of human mesothelial cells. Int J Cancer 121(1):12–20. doi:10.1002/ijc.22687

    PubMed  CAS  Google Scholar 

  • Bianchi C, Bianchi T (2007) Malignant mesothelioma: global incidence and relationship with asbestos. Ind Health 45(3):379–387. doi:10.2486/indhealth.45.379

    PubMed  Google Scholar 

  • Bianchi C, Brollo A, Ramani L, Bianchi T, Giarelli L (2004) Familial mesothelioma of the pleura—a report of 40 cases. Ind Health 42(2):235–239. doi:10.2486/indhealth.42.235

    PubMed  Google Scholar 

  • Bjorkqvist AM, Tammilehto L, Anttila S, Mattson K, Knuutila S (1997) Recurrent DNA copy number changes in 1q, 4q, 6q, 9p, 13q, 14q and 22q detected by comparative genomic hybridization in malignant mesothelioma. Br J Cancer 75(4):523–527

    PubMed  CAS  Google Scholar 

  • Bocchetta M, Di Resta I, Powers A, Fresco R, Tosolini A, Testa JR et al (2000) Human mesothelial cells are unusually susceptible to simian virus 40-mediated transformation and asbestos cocarcinogenicity. Proc Natl Acad Sci USA 97(18):10214–10219. doi:10.1073/pnas.170207097

    PubMed  CAS  Google Scholar 

  • Bocchetta M, Miele L, Pass HI, Carbone M (2003) Notch-1 induction, a novel activity of SV40 required for growth of SV40-transformed human mesothelial cells. Oncogene 22(1):81–89. doi:10.1038/sj.onc.1206097

    PubMed  CAS  Google Scholar 

  • Boutin C, Schlesser M, Frenay C, Astoul P (1998) Malignant pleural mesothelioma. Eur Respir J 12(4):972–981. doi:10.1183/09031936.98.12040972

    PubMed  CAS  Google Scholar 

  • Butel JS, Jafar S, Stewart AR, Lednicky JA (1998) Detection of authentic SV40 DNA sequences in human brain and bone tumours. Dev Biol Stand 94:23–32

    PubMed  CAS  Google Scholar 

  • Cacciotti P, Libener R, Betta P, Martini F, Porta C, Procopio A et al (2001) SV40 replication in human mesothelial cells induces HGF/Met receptor activation: a model for viral-related carcinogenesis of human malignant mesothelioma. Proc Natl Acad Sci USA 98(21):12032–12037. doi:10.1073/pnas.211026798

    PubMed  CAS  Google Scholar 

  • Cacciotti P, Strizzi L, Vianale G, Iaccheri L, Libener R, Porta C et al (2002) The presence of simian-virus 40 sequences in mesothelioma and mesothelial cells is associated with high levels of vascular endothelial growth factor. Am J Respir Cell Mol Biol 26(2):189–193

    PubMed  CAS  Google Scholar 

  • Cacciotti P, Barbone D, Porta C, Altomare DA, Testa JR, Mutti L et al (2005) SV40-dependent AKT activity drives mesothelial cell transformation after asbestos exposure. Cancer Res 65(12):5256–5262. doi:10.1158/0008-5472.CAN-05-0127

    PubMed  CAS  Google Scholar 

  • Cahan WG, Woodard HQ, Higinbotham NL, Stewart FW, Coley BL (1998) Sarcoma arising in irradiated bone: report of eleven cases. 1948. Cancer 82(1):8–34. doi:10.1002/(SICI)1097-0142(19980101)82:1<8::AID-CNCR3>3.0.CO;2-W

    PubMed  CAS  Google Scholar 

  • Carbone M (1999) Simian virus 40 and human tumors: it is time to study mechanisms. J Cell Biochem 76(2):189–193. doi:10.1002/(SICI)1097-4644(20000201)76:2<189::AID-JCB3>3.0.CO;2-J

    PubMed  CAS  Google Scholar 

  • Carbone M, Pass HI (2002) Re: debate on the link between SV40 and human cancer continues. J Natl Cancer Inst 94(3):229–230

    PubMed  Google Scholar 

  • Carbone M, Pass HI, Rizzo P, Marinetti M, Di Muzio M, Mew DJ et al (1994) Simian virus 40-like DNA sequences in human pleural mesothelioma. Oncogene 9(6):1781–1790

    PubMed  CAS  Google Scholar 

  • Carbone M, Kratzke RA, Testa JR (2002) The pathogenesis of mesothelioma. Semin Oncol 29(1):2–17. doi:10.1053/sonc.2002.30227

    PubMed  CAS  Google Scholar 

  • Cavazza A, Travis LB, Travis WD, Wolfe JT 3rd, Foo ML, Gillespie DJ et al (1996) Post-irradiation malignant mesothelioma. Cancer 77(7):1379–1385. doi:10.1002/(SICI)1097-0142(19960401)77:7<1379::AID-CNCR24>3.0.CO;2-Y

    PubMed  CAS  Google Scholar 

  • Choe N, Tanaka S, Kagan E (1998) Asbestos fibers and interleukin-1 upregulate the formation of reactive nitrogen species in rat pleural mesothelial cells. Am J Respir Cell Mol Biol 19(2):226–236

    PubMed  CAS  Google Scholar 

  • Coffin CM, Dehner LP (1992) Mesothelial and related neoplasms in children and adolescents: a clinicopathologic and immunohistochemical analysis of eight cases. Pediatric Pathol 12(3):333–347

    CAS  Google Scholar 

  • Comba P, Gianfagna A, Paoletti L (2003) Pleural mesothelioma cases in Biancavilla are related to a new fluoro-edenite fibrous amphibole. Arch Environ Health 58(4):229–232. doi:10.3200/AEOH.58.4.229-232

    PubMed  Google Scholar 

  • Corson JM (1997) Pathology of diffuse malignant pleural mesothelioma. Semin Thorac Cardiovasc Surg 9(4):347–355

    PubMed  CAS  Google Scholar 

  • Cristaudo A, Foddis R, Vivaldi A, Buselli R, Gattini V, Guglielmi G et al (2005) SV40 enhances the risk of malignant mesothelioma among people exposed to asbestos: a molecular epidemiologic case-control study. Cancer Res 65(8):3049–3052

    PubMed  CAS  Google Scholar 

  • De Rienzo A, Jhanwar SC, Testa JR (2000) Loss of heterozygosity analysis of 13q and 14q in human malignant mesothelioma. Genes Chromosomes Cancer 28(3):337–341. doi:10.1002/1098-2264(200007)28:3<337::AID-GCC12>3.0.CO;2-B

    PubMed  Google Scholar 

  • Demirag F, Unsal E, Yilmaz A, Caglar A (2005) Prognostic significance of vascular endothelial growth factor, tumor necrosis, and mitotic activity index in malignant pleural mesothelioma. Chest 128(5):3382–3387. doi:10.1378/chest.128.5.3382

    PubMed  CAS  Google Scholar 

  • Destro A, Ceresoli GL, Falleni M, Zucali PA, Morenghi E, Bianchi P et al (2006) EGFR overexpression in malignant pleural mesothelioma. An immunohistochemical and molecular study with clinico-pathological correlations. Lung Cancer 51(2):207–215. doi:10.1016/j.lungcan.2005.10.016

    PubMed  CAS  Google Scholar 

  • Dewar A, Valente M, Ring NP, Corrin B (1987) Pleural mesothelioma of epithelial type and pulmonary adenocarcinoma: an ultrastructural and cytochemical comparison. J Pathol 152(4):309–316. doi:10.1002/path.1711520409

    PubMed  CAS  Google Scholar 

  • Dhaene K, Wauters J, Weyn B, Timmermans JP, van Marck E (2000) Expression profile of telomerase subunits in human pleural mesothelioma. J Pathol 190(1):80–85. doi:10.1002/(SICI)1096-9896(200001)190:1<80::AID-PATH498>3.0.CO;2-7

    PubMed  CAS  Google Scholar 

  • Dianzani I, Gibello L, Biava A, Giordano M, Bertolotti M, Betti M et al (2006) Polymorphisms in DNA repair genes as risk factors for asbestos-related malignant mesothelioma in a general population study. Mutat Res 599(1–2):124–134. doi:10.1016/j.mrfmmm.2006.02.005

    PubMed  CAS  Google Scholar 

  • Edwards JG, McLaren J, Jones JL, Waller DA, O’Byrne KJ (2003) Matrix metalloproteinases 2 and 9 (gelatinases A and B) expression in malignant mesothelioma and benign pleura. Br J Cancer 88(10):1553–1559. doi:10.1038/sj.bjc.6600920

    PubMed  CAS  Google Scholar 

  • Engels EA, Katki HA, Nielsen NM, Winther JF, Hjalgrim H, Gjerris F et al (2003) Cancer incidence in Denmark following exposure to poliovirus vaccine contaminated with simian virus 40. J Natl Cancer Inst 95(7):532–539

    Article  PubMed  CAS  Google Scholar 

  • Foddis R, De Rienzo A, Broccoli D, Bocchetta M, Stekala E, Rizzo P et al (2002) SV40 infection induces telomerase activity in human mesothelial cells. Oncogene 21(9):1434–1442. doi:10.1038/sj.onc.1205203

    PubMed  CAS  Google Scholar 

  • Fraire AE, Cooper S, Greenberg SD, Buffler P, Langston C (1988) Mesothelioma of childhood. Cancer 62(4):838–847. doi:10.1002/1097-0142(19880815)62:4<838::AID-CNCR2820620433>3.0.CO;2-9

    PubMed  CAS  Google Scholar 

  • Gilks B, Hegedus C, Freeman H, Fratkin L, Churg A (1988) Malignant peritoneal mesothelioma after remote abdominal radiation. Cancer 61(10):2019–2021. doi:10.1002/1097-0142(19880515)61:10<2019::AID-CNCR2820611015>3.0.CO;2-K

    PubMed  CAS  Google Scholar 

  • Griffiths DJ, Nicholson AG, Weiss RA (1998) Detection of SV40 sequences in human mesothelioma. Dev Biol Stand 94:127–136

    PubMed  CAS  Google Scholar 

  • Gulumian M, van Wyk JA (1987) Hydroxyl radical production in the presence of fibres by a Fenton-type reaction. Chem Biol Interact 62(1):89–97. doi:10.1016/0009-2797(87)90081-0

    PubMed  CAS  Google Scholar 

  • Hansen K, Mossman BT (1987) Generation of superoxide (O2-.) from alveolar macrophages exposed to asbestiform and nonfibrous particles. Cancer Res 47(6):1681–1686

    PubMed  CAS  Google Scholar 

  • Harvey P, Warn A, Dobbin S, Arakaki N, Daikuhara Y, Jaurand MC et al (1998) Expression of HGF/SF in mesothelioma cell lines and its effects on cell motility, proliferation and morphology. Br J Cancer 77(7):1052–1059

    PubMed  CAS  Google Scholar 

  • He B, Lee AY, Dadfarmay S, You L, Xu Z, Reguart N et al (2005) Secreted frizzled-related protein 4 is silenced by hypermethylation and induces apoptosis in beta-catenin-deficient human mesothelioma cells. Cancer Res 65(3):743–748

    PubMed  CAS  Google Scholar 

  • Hill JK, Heitmiller RF 2nd, Askin FB, Kuhlman JE (1997) Localized benign pleural mesothelioma arising in a radiation field. Clin Imaging 21(3):189–194. doi:10.1016/S0899-7071(96)00024-1

    PubMed  CAS  Google Scholar 

  • Hirano H, Tsuji M, Kizaki T, Sashikata T, Yoshi Y, Okada Y et al (2002) Expression of matrix metalloproteinases, tissue inhibitors of metalloproteinase, collagens, and Ki67 antigen in pleural malignant mesothelioma: an immunohistochemical and electron microscopic study. Med Electron Microsc 35(1):16–23. doi:10.1007/s007950200002

    PubMed  CAS  Google Scholar 

  • Hofmann J, Mintzer D, Warhol MJ (1994) Malignant mesothelioma following radiation therapy. Am J Med 97(4):379–382. doi:10.1016/0002-9343(94)90307-7

    PubMed  CAS  Google Scholar 

  • Hubbard R (1997) The aetiology of mesothelioma: are risk factors other than asbestos exposure important? Thorax 52(6):496–497

    Article  PubMed  CAS  Google Scholar 

  • Huncharek M (2002) Non-asbestos related diffuse malignant mesothelioma. Tumori 88(1):1–9

    PubMed  Google Scholar 

  • Hussussian CJ, Mackinnon SE (1999) Postradiation neural sheath sarcoma of the brachial plexus: a case report. Ann Plast Surg 43(3):313–317. doi:10.1097/00000637-199909000-00017

    PubMed  CAS  Google Scholar 

  • Huuskonen MS, Karjalainen A, Tossavainen A, Rantanen J (1995) Asbestos and cancer in Finland. Med Lav 86(5):426–434

    PubMed  CAS  Google Scholar 

  • Illei PB, Rusch VW, Zakowski MF, Ladanyi M (2003) Homozygous deletion of CDKN2A and codeletion of the methylthioadenosine phosphorylase gene in the majority of pleural mesotheliomas. Clin Cancer Res 9(6):2108–2113

    PubMed  CAS  Google Scholar 

  • Inoue YZ, Frassica FJ, Sim FH, Unni KK, Petersen IA, McLeod RA (2000) Clinicopathologic features and treatment of postirradiation sarcoma of bone and soft tissue. J Surg Oncol 75(1):42–50. doi:10.1002/1096-9098(200009)75:1<42::AID-JSO8>3.0.CO;2-G

    PubMed  CAS  Google Scholar 

  • Ismail-Khan R, Robinson LA, Williams CC Jr, Garrett CR, Bepler G, Simon GR (2006) Malignant pleural mesothelioma: a comprehensive review. Cancer Control 13(4):255–263

    PubMed  Google Scholar 

  • Jagadeeswaran R, Ma PC, Seiwert TY, Jagadeeswaran S, Zumba O, Nallasura V et al (2006) Functional analysis of c-Met/hepatocyte growth factor pathway in malignant pleural mesothelioma. Cancer Res 66(1):352–361. doi:10.1158/0008-5472.CAN-04-4567

    PubMed  CAS  Google Scholar 

  • Jaurand MC (1991) Observations on the carcinogenicity of asbestos fibers. Ann N Y Acad Sci 643:258–270. doi:10.1111/j.1749-6632.1991.tb24470.x

    PubMed  CAS  Google Scholar 

  • Jimenez LA, Zanella C, Fung H, Janssen YM, Vacek P, Charland C et al (1997) Role of extracellular signal-regulated protein kinases in apoptosis by asbestos and H2O2. Am J Physiol 273(5 Pt 1):L1029–L1035

    PubMed  CAS  Google Scholar 

  • Kamp DW, Israbian VA, Preusen SE, Zhang CX, Weitzman SA (1995) Asbestos causes DNA strand breaks in cultured pulmonary epithelial cells: role of iron-catalyzed free radicals. Am J Physiol 268(3 Pt 1):L471–L480

    PubMed  CAS  Google Scholar 

  • Kawashima A, Libshitz HI, Lukeman JM (1990) Radiation-induced malignant pleural mesothelioma. Can Assoc Radiol J 41(6):384–386

    PubMed  CAS  Google Scholar 

  • Kindler HL (2004) Moving beyond chemotherapy: novel cytostatic agents for malignant mesothelioma. Lung Cancer 45(Suppl 1):S125–S127. doi:10.1016/j.lungcan.2004.04.022

    PubMed  Google Scholar 

  • Kitamura F, Araki S, Suzuki Y, Yokoyama K, Tanigawa T, Iwasaki R (2002) Assessment of the mutations of p53 suppressor gene and Ha- and Ki-ras oncogenes in malignant mesothelioma in relation to asbestos exposure: a study of 12 American patients. Ind Health 40(2):175–181. doi:10.2486/indhealth.40.175

    PubMed  CAS  Google Scholar 

  • Klein G, Powers A, Croce C (2002) Association of SV40 with human tumors. Oncogene 21(8):1141–1149. doi:10.1038/sj.onc.1205173

    PubMed  CAS  Google Scholar 

  • Kops SP (2000) Oral polio vaccine and human cancer: a reassessment of SV40 as a contaminant based upon legal documents. Anticancer Res 20(6C):4745–4749

    PubMed  CAS  Google Scholar 

  • Kops GJ, Weaver BA, Cleveland DW (2005) On the road to cancer: aneuploidy and the mitotic checkpoint. Nat Rev 5(10):773–785

    CAS  Google Scholar 

  • Kumar K, Rahman Q, Schipper H, Matschegewski C, Schiffmann D, Papp T (2005) Mutational analysis of 9 different tumour-associated genes in human malignant mesothelioma cell lines. Oncol Rep 14(3):743–750

    PubMed  CAS  Google Scholar 

  • Kumar-Singh S, Segers K, Rodeck U, Backhovens H, Bogers J, Weyler J et al (1997) WT1 mutation in malignant mesothelioma and WT1 immunoreactivity in relation to p53 and growth factor receptor expression, cell-type transition, and prognosis. J Pathol 181(1):67–74. doi:10.1002/(SICI)1096-9896(199701)181:1<67::AID-PATH723>3.0.CO;2-Z

    PubMed  CAS  Google Scholar 

  • Landi S, Gemignani F, Neri M, Barale R, Bonassi S, Bottari F et al (2007) Polymorphisms of glutathione-S-transferase M1 and manganese superoxide dismutase are associated with the risk of malignant pleural mesothelioma. Int J Cancer 120(12):2739–2743. doi:10.1002/ijc.22590

    PubMed  CAS  Google Scholar 

  • Langerak AW, Williamson KA, Miyagawa K, Hagemeijer A, Versnel MA, Hastie ND (1995) Expression of the Wilms’ tumor gene WT1 in human malignant mesothelioma cell lines and relationship to platelet-derived growth factor A and insulin-like growth factor 2 expression. Genes Chromosomes Cancer 12(2):87–96. doi:10.1002/gcc.2870120203

    PubMed  CAS  Google Scholar 

  • Lecomte C, Andujar P, Renier A, Kheuang L, Abramowski V, Mellottee L, Fleury-Feith J, Zucman-Rossi J, Giovannini M, Jaurand MC (2005) Similar tumor suppressor gene alteration profiles in asbestos-induced murine and human mesothelioma. Cell cycle 4(12):1862–1869

    PubMed  CAS  Google Scholar 

  • Lee TC, Zhang Y, Aston C, Hintz R, Jagirdar J, Perle MA et al (1993) Normal human mesothelial cells and mesothelioma cell lines express insulin-like growth factor I and associated molecules. Cancer Res 53(12):2858–2864

    PubMed  CAS  Google Scholar 

  • Lee AY, He B, You L, Xu Z, Mazieres J, Reguart N et al (2004a) Dickkopf-1 antagonizes Wnt signaling independent of beta-catenin in human mesothelioma. Biochem Biophys Res Commun 323(4):1246–1250. doi:10.1016/j.bbrc.2004.09.001

    PubMed  CAS  Google Scholar 

  • Lee AY, He B, You L, Dadfarmay S, Xu Z, Mazieres J et al (2004b) Expression of the secreted frizzled-related protein gene family is downregulated in human mesothelioma. Oncogene 23(39):6672–6676. doi:10.1038/sj.onc.1207881

    PubMed  CAS  Google Scholar 

  • Lee AY, Raz DJ, He B, Jablons DM (2007) Update on the molecular biology of malignant mesothelioma. Cancer 109(8):1454–1461. doi:10.1002/cncr.22552

    PubMed  CAS  Google Scholar 

  • Lerman Y, Learman Y, Schachter P, Herceg E, Lieberman Y, Yellin A (1991) Radiation associated malignant pleural mesothelioma. Thorax 46(6):463–464

    PubMed  CAS  Google Scholar 

  • Liu Z, Klominek J (2003) Regulation of matrix metalloprotease activity in malignant mesothelioma cell lines by growth factors. Thorax 58(3):198–203. doi:10.1136/thorax.58.3.198

    PubMed  CAS  Google Scholar 

  • Liu Z, Klominek J (2004) Chemotaxis and chemokinesis of malignant mesothelioma cells to multiple growth factors. Anticancer Res 24(3a):1625–1630

    PubMed  CAS  Google Scholar 

  • Liu Z, Ivanoff A, Klominek J (2001) Expression and activity of matrix metalloproteases in human malignant mesothelioma cell lines. Int J Cancer 91(5):638–643. doi:10.1002/1097-0215(200002)9999:9999<::AID-IJC1102>3.0.CO;2-Y

    PubMed  CAS  Google Scholar 

  • Lopez-Rios F, Chuai S, Flores R, Shimizu S, Ohno T, Wakahara K et al (2006) Global gene expression profiling of pleural mesotheliomas: overexpression of aurora kinases and P16/CDKN2A deletion as prognostic factors and critical evaluation of microarray-based prognostic prediction. Cancer Res 66(6):2970–2979. doi:10.1158/0008-5472.CAN-05-3907

    PubMed  CAS  Google Scholar 

  • Mancuso TF (1988) Relative risk of mesothelioma among railroad machinists exposed to chrysotile. Am J Ind Med 13(6):639–657. doi:10.1002/ajim.4700130604

    PubMed  CAS  Google Scholar 

  • Manfredi JJ, Dong J, Liu WJ, Resnick-Silverman L, Qiao R, Chahinian P et al (2005) Evidence against a role for SV40 in human mesothelioma. Cancer Res 65(7):2602–2609. doi:10.1158/0008-5472.CAN-04-2461

    PubMed  CAS  Google Scholar 

  • Marchevsky AM, Harber P, Crawford L, Wick MR (2006) Mesothelioma in patients with nonoccupational asbestos exposure. An evidence-based approach to causation assessment. Ann Diagn Pathol 10(4):241–250. doi:10.1016/j.anndiagpath.2006.06.012

    PubMed  Google Scholar 

  • Masood R, Kundra A, Zhu S, Xia G, Scalia P, Smith DL et al (2003) Malignant mesothelioma growth inhibition by agents that target the VEGF and VEGF-C autocrine loops. Int J Cancer 104(5):603–610. doi:10.1002/ijc.10996

    PubMed  CAS  Google Scholar 

  • Mayall F, Barratt K, Shanks J (2003) The detection of Simian virus 40 in mesotheliomas from New Zealand and England using real time FRET probe PCR protocols. J Clin Pathol 56(10):728–730. doi:10.1136/jcp.56.10.728

    PubMed  CAS  Google Scholar 

  • McDonald JC, Armstrong BG, Edwards CW, Gibbs AR, Lloyd HM, Pooley FD et al (2001) Case-referent survey of young adults with mesothelioma: I Lung fibre analyses. Ann Occup Hyg 45(7):513–518

    PubMed  CAS  Google Scholar 

  • Mesurolle B, Qanadli SD, Merad M, Mignon F, Baldeyrou P, Tardivon A et al (2000) Unusual radiologic findings in the thorax after radiation therapy. Radiographics 20(1):67–81

    PubMed  CAS  Google Scholar 

  • Miracco C, Materno M, De Santi MM, Pirtoli L, Ninfo V (2000) Unusual second malignancies following radiation therapy: subcutaneous pleomorphic rhabdomyosarcoma and cutaneous melanoma. Two case reports. J Cutan Pathol 27(8):419–422. doi:10.1034/j.1600-0560.2000.027008419.x

    PubMed  CAS  Google Scholar 

  • Murthy SS, Testa JR (1999) Asbestos, chromosomal deletions, and tumor suppressor gene alterations in human malignant mesothelioma. J Cell Physiol 180(2):150–157. doi:10.1002/(SICI)1097-4652(199908)180:2<150::AID-JCP2>3.0.CO;2-H

    PubMed  CAS  Google Scholar 

  • Neragi-Miandoab S (2006) Multimodality approach in management of malignant pleural mesothelioma. Eur J Cardiothorac Surg 29(1):14–19. doi:10.1016/j.ejcts.2005.10.008

    PubMed  Google Scholar 

  • Neragi-Miandoab S, Gangadharan SP, Sugarbaker DJ (2005) Cardiac sarcoma 14 years after treatment for pleural mesothelioma. N Engl J Med 352(18):1929–1930. doi:10.1056/NEJM200505053521821

    PubMed  CAS  Google Scholar 

  • Neri M, Filiberti R, Taioli E, Garte S, Paracchini V, Bolognesi C et al (2005) Pleural malignant mesothelioma, genetic susceptibility and asbestos exposure. Mutat Res 592(1–2):36–44. doi:10.1016/j.mrfmmm.2005.06.003

    PubMed  CAS  Google Scholar 

  • Neuberger M, Kundi M (1990) Individual asbestos exposure: smoking and mortality–a cohort study in the asbestos cement industry. Br J Ind Med 47(9):615–620

    PubMed  CAS  Google Scholar 

  • Ni Z, Liu Y, Keshava N, Zhou G, Whong W, Ong T (2000) Analysis of K-ras and p53 mutations in mesotheliomas from humans and rats exposed to asbestos. Mutat Res 468(1):87–92

    PubMed  CAS  Google Scholar 

  • Nicholson WJ (2001) The carcinogenicity of chrysotile asbestos—a review. Ind Health 39(2):57–64. doi:10.2486/indhealth.39.57

    PubMed  CAS  Google Scholar 

  • Niggli FK, Gray TJ, Raafat F, Stevens MC (1994) Spectrum of peritoneal mesothelioma in childhood: clinical and histopathologic features, including DNA cytometry. Pediatr Hematol Oncol 11(4):399–408. doi:10.3109/08880019409140539

    PubMed  CAS  Google Scholar 

  • Nymark P, Lindholm PM, Korpela MV, Lahti L, Ruosaari S, Kaski S et al (2007) Gene expression profiles in asbestos-exposed epithelial and mesothelial lung cell lines. BMC Genomics 8:62. doi:10.1186/1471-2164-8-62

    PubMed  Google Scholar 

  • Ohar JA, Ampleford EJ, Howard SE, Sterling DA (2007) Identification of a mesothelioma phenotype. Respir Med 101(3):503–509. doi:10.1016/j.rmed.2006.06.028

    PubMed  Google Scholar 

  • Oury TD, Hammar SP, Roggli VL (1998) Ultrastructural features of diffuse malignant mesotheliomas. Hum Pathol 29(12):1382–1392. doi:10.1016/S0046-8177(98)90006-5

    PubMed  CAS  Google Scholar 

  • Papp T, Schipper H, Pemsel H, Bastrop R, Muller KM, Wiethege T et al (2001) Mutational analysis of N-ras, p53, p16INK4a, p14ARF and CDK4 genes in primary human malignant mesotheliomas. Int J Oncol 18(2):425–433

    PubMed  CAS  Google Scholar 

  • Park S, Schalling M, Bernard A, Maheswaran S, Shipley GC, Roberts D et al (1993) The Wilms tumour gene WT1 is expressed in murine mesoderm-derived tissues and mutated in a human mesothelioma. Nat Genet 4(4):415–420. doi:10.1038/ng0893-415

    PubMed  CAS  Google Scholar 

  • Pass HI, Donington JS, Wu P, Rizzo P, Nishimura M, Kennedy R et al (1998) Human mesotheliomas contain the simian virus-40 regulatory region and large tumor antigen DNA sequences. J Thorac Cardiovasc Surg 116(5):854–859. doi:10.1016/S0022-5223(98)00438-3

    PubMed  CAS  Google Scholar 

  • Pepper C, Jasani B, Navabi H, Wynford-Thomas D, Gibbs AR (1996) Simian virus 40 large T antigen (SV40LTAg) primer specific DNA amplification in human pleural mesothelioma tissue. Thorax 51(11):1074–1076

    PubMed  CAS  Google Scholar 

  • Pietruska JR, Kane AB (2007) SV40 oncoproteins enhance asbestos-induced DNA double-strand breaks and abrogate senescence in murine mesothelial cells. Cancer Res 67(8):3637–3645. doi:10.1158/0008-5472.CAN-05-3727

    PubMed  CAS  Google Scholar 

  • Pipas JM, Levine AJ (2001) Role of T antigen interactions with p53 in tumorigenesis. Semin Cancer Biol 11(1):23–30. doi:10.1006/scbi.2000.0343

    PubMed  CAS  Google Scholar 

  • Polakis P (2000) Wnt signaling and cancer. Genes Dev 14(15):1837–1851

    PubMed  CAS  Google Scholar 

  • Poulikakos PI, Xiao GH, Gallagher R, Jablonski S, Jhanwar SC, Testa JR (2006) Re-expression of the tumor suppressor NF2/merlin inhibits invasiveness in mesothelioma cells and negatively regulates FAK. Oncogene 25(44):5960–5968. doi:10.1038/sj.onc.1209587

    PubMed  CAS  Google Scholar 

  • Pylkkanen L, Sainio M, Ollikainen T, Mattson K, Nordling S, Carpen O et al (2002) Concurrent LOH at multiple loci in human malignant mesothelioma with preferential loss of NF2 gene region. Oncol Rep 9(5):955–959

    PubMed  CAS  Google Scholar 

  • Ramos-Nino ME, Timblin CR, Mossman BT (2002) Mesothelial cell transformation requires increased AP-1 binding activity and ERK-dependent Fra-1 expression. Cancer Res 62(21):6065–6069

    PubMed  CAS  Google Scholar 

  • Riedl SJ, Shi Y (2004) Molecular mechanisms of caspase regulation during apoptosis. Nat Rev Mol Cell Biol 5(11):897–907. doi:10.1038/nrm1496

    PubMed  CAS  Google Scholar 

  • Robinson C, van Bruggen I, Segal A, Dunham M, Sherwood A, Koentgen F et al (2006) A novel SV40 TAg transgenic model of asbestos-induced mesothelioma: malignant transformation is dose dependent. Cancer Res 66(22):10786–10794. doi:10.1158/0008-5472.CAN-05-4668

    PubMed  CAS  Google Scholar 

  • Rosenthal GJ, Simeonova P, Corsini E (1999) Asbestos toxicity: an immunologic perspective. Rev Environ Health 14(1):11–20

    PubMed  CAS  Google Scholar 

  • Sebastien P, Janson X, Gaudichet A, Hirsch A, Bignon J (1980) Asbestos retention in human respiratory tissues: comparative measurements in lung parenchyma and in parietal pleura. IARC Sci Publ (30):237-246

  • Shannon VR, Nesbitt JC, Libshitz HI (1995) Malignant pleural mesothelioma after radiation therapy for breast cancer. A report of two additional patients. Cancer 76(3):437–441. doi:10.1002/1097-0142(19950801)76:3<437::AID-CNCR2820760314>3.0.CO;2-A

    PubMed  CAS  Google Scholar 

  • Shaulian E, Karin M (2002) AP-1 as a regulator of cell life and death. Nat Cell Biol 4(5):E131–E136. doi:10.1038/ncb0502-e131

    PubMed  CAS  Google Scholar 

  • Spugnini EP, Bosari S, Citro G, Lorenzon I, Cognetti F, Baldi A (2006) Human malignant mesothelioma: molecular mechanisms of pathogenesis and progression. Int J Biochem Cell Biol 38(12):2000–2004. doi:10.1016/j.biocel.2006.07.002

    PubMed  CAS  Google Scholar 

  • Stanton MF, Wrench C (1972) Mechanisms of mesothelioma induction with asbestos and fibrous glass. J Natl Cancer Inst 48(3):797–821

    PubMed  CAS  Google Scholar 

  • Strizzi L, Catalano A, Vianale G, Orecchia S, Casalini A, Tassi G et al (2001) Vascular endothelial growth factor is an autocrine growth factor in human malignant mesothelioma. J Pathol 193(4):468–475. doi:10.1002/path.824

    PubMed  CAS  Google Scholar 

  • Sugarbaker DJ, Flores RM, Jaklitsch MT, Richards WG, Strauss GM, Corson JM et al (1999) Resection margins, extrapleural nodal status, and cell type determine postoperative long-term survival in trimodality therapy of malignant pleural mesothelioma: results in 183 patients. J Thorac Cardiovasc Surg 117(1):54–63. doi:10.1016/S0022-5223(99)70469-1 discussion 63–55

    PubMed  CAS  Google Scholar 

  • Suzuki Y (2001) Pathology of human malignant mesothelioma—preliminary analysis of 1, 517 mesothelioma cases. Ind Health 39(2):183–185. doi:10.2486/indhealth.39.183

    PubMed  CAS  Google Scholar 

  • Testa PH Jr, Carbone M (2001) Molecular biology of mesothelioma. Lippincott, Philadelphia

    Google Scholar 

  • Testa JR, Giordano A (2001) SV40 and cell cycle perturbations in malignant mesothelioma. Semin Cancer Biol 11(1):31–38. doi:10.1006/scbi.2000.0344

    PubMed  CAS  Google Scholar 

  • Testa JR, Carbone M, Hirvonen A, Khalili K, Krynska B, Linnainmaa K et al (1998) A multi-institutional study confirms the presence and expression of simian virus 40 in human malignant mesotheliomas. Cancer Res 58(20):4505–4509

    PubMed  CAS  Google Scholar 

  • Thurlbeck WMR (1988) The respiratory system, disease of the pleura. Lippincott, Philadelphia

    Google Scholar 

  • Toyooka S, Carbone M, Toyooka KO, Bocchetta M, Shivapurkar N, Minna JD et al (2002) Progressive aberrant methylation of the RASSF1A gene in simian virus 40 infected human mesothelial cells. Oncogene 21(27):4340–4344. doi:10.1038/sj.onc.1205381

    PubMed  CAS  Google Scholar 

  • Uematsu K, Kanazawa S, You L, He B, Xu Z, Li K et al (2003) Wnt pathway activation in mesothelioma: evidence of Dishevelled overexpression and transcriptional activity of beta-catenin. Cancer Res 63(15):4547–4551

    PubMed  CAS  Google Scholar 

  • Vanneuville G, Escande G, Dechelotte P, Demeocq F, Nebout P, Scheye T et al (1993) Malignant pleural tumor in a child mimicking a mesothelioma. Eur J Pediatr Surg 3(6):362–365

    Article  PubMed  CAS  Google Scholar 

  • Vaslet CA, Messier NJ, Kane AB (2002) Accelerated progression of asbestos-induced mesotheliomas in heterozygous p53± mice. Toxicol Sci 68(2):331–338. doi:10.1093/toxsci/68.2.331

    PubMed  CAS  Google Scholar 

  • Versnel MA, Hagemeijer A, Bouts MJ, van der Kwast TH, Hoogsteden HC (1988) Expression of c-sis (PDGF B-chain) and PDGF A-chain genes in ten human malignant mesothelioma cell lines derived from primary and metastatic tumors. Oncogene 2(6):601–605

    PubMed  CAS  Google Scholar 

  • Vilchez RA, Kozinetz CA, Arrington AS, Madden CR, Butel JS (2003) Simian virus 40 in human cancers. Am J Med 114(8):675–684. doi:10.1016/S0002-9343(03)00087-1

    PubMed  Google Scholar 

  • Vivo C, Lecomte C, Levy F, Leroy K, Kirova Y, Renier A et al (2003) Cell cycle checkpoint status in human malignant mesothelioma cell lines: response to gamma radiation. Br J Cancer 88(3):388–395. doi:10.1038/sj.bjc.6600736

    PubMed  CAS  Google Scholar 

  • Weissmann LB, Corson JM, Neugut AI, Antman KH (1996) Malignant mesothelioma following treatment for Hodgkin’s disease. J Clin Oncol 14(7):2098–2100

    PubMed  CAS  Google Scholar 

  • Whitmarsh AJ, Davis RJ (1996) Transcription factor AP-1 regulation by mitogen-activated protein kinase signal transduction pathways. J Mol Med 74(10):589–607. doi:10.1007/s001090050063

    PubMed  CAS  Google Scholar 

  • Whitson BA, Kratzke RA (2006) Molecular pathways in malignant pleural mesothelioma. Cancer Lett 239(2):183–189. doi:10.1016/j.canlet.2005.08.010

    PubMed  CAS  Google Scholar 

  • Wojta J, Kaun C, Breuss JM, Koshelnick Y, Beckmann R, Hattey E, Mildner M, Weninger W, Nakamura T, Tschachler E et al (1999) Hepatocyte growth factor increases expression of vascular endothelial growth factor and plasminogen activator inhibitor-1 in human keratinocytes and the vascular endothelial growth factor receptor flk-1 in human endothelial cells. Lab Investig 79(4):427–438

    PubMed  CAS  Google Scholar 

  • Wong L, Zhou J, Anderson D, Kratzke RA (2002) Inactivation of p16INK4a expression in malignant mesothelioma by methylation. Lung Cancer 38(2):131–136. doi:10.1016/S0169-5002(02)00178-2

    PubMed  Google Scholar 

  • Report on the expert panel on health effects of asbestos and synthetic vitreous fibers: the influence of fiber length. http://www.atsdr.cdc.gov/HAC/asbestospanel/finalpart1.pdf

  • Yang H, Bocchetta M, Kroczynska B, Elmishad AG, Chen Y, Liu Z et al (2006) TNF-alpha inhibits asbestos-induced cytotoxicity via a NF-kappaB-dependent pathway, a possible mechanism for asbestos-induced oncogenesis. Proc Natl Acad Sci USA 103(27):10397–10402. doi:10.1073/pnas.0604008103

    PubMed  CAS  Google Scholar 

  • Yarborough CM (2006) Chrysotile as a cause of mesothelioma: an assessment based on epidemiology. Crit Rev Toxicol 36(2):165–187. doi:10.1080/10408440500534248

    PubMed  CAS  Google Scholar 

  • Yarborough CM (2007) The risk of mesothelioma from exposure to chrysotile asbestos. Curr Opin Pulm Med 13(4):334–338. doi:10.1097/MCP.0b013e328121446c

    PubMed  CAS  Google Scholar 

  • Zanella CL, Posada J, Tritton TR, Mossman BT (1996) Asbestos causes stimulation of the extracellular signal-regulated kinase 1 mitogen-activated protein kinase cascade after phosphorylation of the epidermal growth factor receptor. Cancer Res 56(23):5334–5338

    PubMed  CAS  Google Scholar 

  • Zha S, Yegnasubramanian V, Nelson WG, Isaacs WB, De Marzo AM (2004) Cyclooxygenases in cancer: progress and perspective. Cancer Lett 215(1):1–20. doi:10.1016/j.canlet.2004.06.014

    PubMed  CAS  Google Scholar 

  • Zhong J, Gencay MM, Bubendorf L, Burgess JK, Parson H, Robinson BW et al (2006) ERK1/2 and p38 MAP kinase control MMP-2, MT1-MMP, and TIMP action and affect cell migration: a comparison between mesothelioma and mesothelial cells. J Cell Physiol 207(2):540–552. doi:10.1002/jcp.20605

    PubMed  CAS  Google Scholar 

Download references

Conflicts of interest statement

The authors declare that they have no competing interests.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Siyamek Neragi-Miandoab.

Additional information

S. J. Weiner and S. Neragi-Miandoab contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Weiner, S.J., Neragi-Miandoab, S. Pathogenesis of malignant pleural mesothelioma and the role of environmental and genetic factors. J Cancer Res Clin Oncol 135, 15–27 (2009). https://doi.org/10.1007/s00432-008-0444-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00432-008-0444-9

Keywords

Navigation