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Abstract Children diagnosed with cancer are considered for
inherited cancer susceptibility testing according to well-
established clinical criteria. With increasing efforts to personal-
ize cancer medicine, comprehensive genome analyses will find
its way into daily clinical routine in pediatric oncology. Whole
genome and exome sequencing unavoidably generates inciden-
tal findings. The somatic “molecular make-up” of a tumor
genome may suggest a germline mutation in a cancer suscep-
tibility syndrome. At least two mechanisms are well-known, (a)
chromothripsis (Li-Fraumeni syndrome) and (b) a high total
number of mutational events which exceeds that of other sam-
ples of the same tumor type (defective DNA mismatch repair).
Hence, pediatricians are faced with the fact that genetic events
within the tumor genome itself can point toward underlying
germline cancer susceptibility. Whenever genetic testing in-
cluding next-generation sequencing (NGS) is initiated, the pe-
diatrician has to inform about the benefits, risks, and alterna-
tives, discuss the possibility of incidental findings and its dis-
closure, and to obtain informed consent prior to testing.
Conclusions: Genetic testing and translational research in
pediatric oncology can incidentally uncover an underlying
cancer susceptibility syndrome with implications for the entire
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family. Pediatricians should therefore increase their awareness
of chances and risks that accompany the increasingly wide
clinical implementation of NGS platforms.

What is Known:

* The proportion of cancers in children attributable to an underlying
genetic syndrome or inherited susceptibility is unclear.

* Pediatricians consider children diagnosed with cancer for inherited
cancer susceptibility according to well-established clinical criteria.

What is New:

* Genetic testing of tumor samples can incidentally uncover an
underlying cancer susceptibility syndrome.

* Findings in tumor genetics can be indicative that the tumor arose on the
basis of the child’s germline alteration, (a) chromothripsis and (b) a
high total number of mutational events which exceeds that of other
samples of the same tumor type.
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Abbreviations

ALL Acute lymphoblastic leukemia

CMMR-D Constitutional mismatch repair-deficiency

CSS Cancer susceptibility syndromes

DGV Database of genomic variants

INFORM  Individualized therapy for relapsed
malignancies in childhood

LFS Li-Fraumeni syndrome

LOH Loss of heterozygosity

Mb Megabase

NGS Next-generation sequencing

SHH-MB  Sonic-Hedgehog medulloblastoma

SNPs Single nucleotide polymorphisms

SNVs Single nucleotide variants
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Introduction

Until now, the proportion of cancers in children and adoles-
cents attributable to an underlying genetic syndrome or
inherited susceptibility is unclear. In the early 1990s, the
inherited fraction of childhood cancer was estimated at 1—
10 % [29]. A recent report from the Pediatric Cancer Genome
Project/St. Jude Children’s Research Hospital determined an
incidence of 16.0 % in patients with solid tumors, 8.6 % with
brain tumors, and 3.9 % with leukemias. The report initially
focused on 23 well-known cancer predisposition genes and 8
genes that predispose to pediatric cancer with a high pene-
trance [47]. The most frequently affected genes included
TP53, APC, and BRCA2. Additional analyses were expanded
to 565 genes that are known to play a role in various steps and
pathways of cellular transformation. Identified variants were
classified as pathologic, likely pathologic, uncertain signifi-
cance, likely benign, and benign. Taking the larger gene-set
into account, the overall prevalence of an inherited mutation
increased only slightly, with a pathologic or likely pathologic
variant being detected in 8.6 % of all patients and 4.6 % of
patients with leukemia. However, the spectrum of tumors se-
quenced was not numerically representative of the spectrum of
childhood tumors, and the mutation frequencies may be
skewed accordingly. In a hereditary cancer risk assessment
study in survivors of childhood cancer, a genetic counselor
considered 29 % of the survivors as eligible for further genet-
ics evaluation [19].

However, in the era of high-throughput sequencing in
which new cancer susceptibility syndromes (CSS) and mech-
anisms are increasingly discovered—did we so far maybe just
see the tip of the iceberg?

Current clinical approach to CSS

Pediatric oncologists consider children diagnosed with cancer
and their families for inherited cancer susceptibility according
to well-established criteria [20]. These comprise patient-
specific constellations including (i) rare tumors commonly
associated with cancer predisposition (e.g., adrenocortical car-
cinoma), (ii) bilateral or multifocal tumors (e.g., Wilms’ tu-
mor), (iii) cancer diagnosis at a younger than expected age
(e.g., thyroid carcinoma), (iv) multiple synchronous or
metachronous tumors, (v) additional conditions (e.g., axillary
freckling) indicative of an underlying syndrome, and (vi) sus-
picious family features. These might include (a) familial clus-
tering of the same or closely related cancers, (b) cancer diag-
noses in two or more first-degree relatives, (c) tumor patterns
associated with a specific cancer predisposition syndrome, (d)
exceptional young age at diagnosis, () sibling with childhood
cancer, and (f) consanguineous parents.

Li-Fraumeni syndrome (LFS) is one of the most striking
familial cancer predisposition syndromes. It is clinically and
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genetically heterogeneous and characterized by autosomal
dominant inheritance and early onset of tumors, multiple tu-
mors within one individual, and multiple affected family
members. LFS presents with a variety of tumor types with soft
tissue sarcomas, osteosarcomas, breast cancer, brain tumors,
leukemia, and adrenocortical carcinoma being the most com-
mon tumor types. Comprehensive surveillance protocols have
been implemented and proven efficiency in terms of superior
survival [46]. Table 1 lists common hereditary cancer suscep-
tibility syndromes sorted by the underlying mechanism. The
American College of Medical Genetics and Genomics and the
National Society of Genetic Counselors just published the
latest referral indications for cancer predisposition assessment
[13]. However, due to de novo mutations, incomplete pene-
trance of inherited mutations, and variable phenotype/
genotype correlations, the family history may not in all cases
be helpful. For example, up to 25 % de novo events of TP53
mutations are reported in Li-Fraumeni syndrome [6]. In most
other cases of CSS, however, the proportion of inherited sus-
ceptibility versus de novo mutations remains unknown.

Personalized medicine

With the ongoing efforts to personalize cancer medicine, com-
prehensive genome analyses will increasingly find its way into
daily clinical routine in pediatric oncology. In the recently
established German INdividualized therapy FOr Relapsed
Malignancies in childhood (INFORM) project, this idea has
been introduced for pediatric patients with relapsed or refrac-
tory high-risk disease without further standard of care therapy
options. Individual tumor samples are characterized on the
molecular level by next-generation sequencing (NGS) to es-
tablish a “fingerprint” of the tumor to identify promising tar-
gets for a successful relapse therapy [10].

Other such examples in which the detection of specific
mutations has already led to a change of therapy of course
also exist. Recently, a new leukemia subtype of high-risk B-
precursor acute lymphoblastic leukemia (ALL), called Ph-like
ALL, was characterized. Besides its Ph- or BCR-ABL-like
transcriptional profile, no translocation t(9;22) or BCR/ABL
rearrangement, respectively, is present. Instead, multiple other
genetic alterations can be detected, which are potentially
druggable by tyrosine kinase inhibitors or other targeted ther-
apies [18, 24, 36, 37]. In pediatric low-grade astrocytoma, the
BRAF V600E-mutation was identified as a frequent genomic
aberration activating the MAPK pathway. Tumors carrying
this mutation show significantly increased BRAF and
CCNDL1 levels [33]. Since its discovery, the BRAF V600E-
mutation has been described in an increasing number of pedi-
atric central nervous system (CNS) tumors [8, 11, 40, 41].
Targeted therapies such as the BRAF inhibitor vemurafenib
and MEK1/2 inhibitors are available and some encouraging
examples of effective therapies even in very aggressive tumor
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4 % renal cell carcinoma 14 % giant cell

Tubers, heterotopia, central nervous system Subependymal giant cell astrocytoma,

AD

TSCI/TSC2

Tuberous sclerosis complex (TSC)

astrocytoma

hamartoma, renal angiomyolipoma, renal
cell carcinoma, cardial rhabdomyoma,

renal angiomyolipoma
Colorectal cancer, glioblastoma multiforme,

migrational/psychomotor delay, seizures,

renal/bone cysts

Depending on subtype 50.4 % cumulative

MLH1, MSH2, MSH6, PSM2  AD CAL

Lynch syndrome type 1/ 11

risk for colorectal cancer at the age of 70

medulloblastoma

High percentage of bilateral Wilms tumors

Wilms tumor, gonadoblastoma

Aniridia, genitourinary abnormalities,

AD

WTI1

WAGR syndrome

mental retardation

*And cell cycle regulation

types have already been reported, such as the successful treat-
ment of a 12-year-old child with relapsed glioblastoma
multiforme with vemurafenib [38]. With the identification of
a highly recurrent genetic alteration and its resulting fusion
protein in ependymoma, the C11orf95-RELA protein, a fur-
ther potentially druggable target was identified and specific
therapy will hopefully be available in the near future [31].
We might also hypothesize that children with hereditary can-
cer syndromes like the so-called rasopathies might soon ben-
efit from targeted therapy, as the underlying genetic alterations
are highly recurrent [1, 9].

Next-generation sequencing

Due to rapid technical advances in the field of NGS, tumor
(including leukemia) genomes can nowadays comprehensive-
ly be analyzed within few days. Today’s state of the art in
high-throughput sequencing already allows the usage of
whole genome sequencing for research projects and of whole
exome sequencing for daily clinical routine. However, the
likelihood of identifying contemplable mutations is highly
dependent on the relative ability of the sequencing approach
to find these mutations. Computational processing, analyzing,
and interpreting the massive amounts of data and genetic var-
iants produced by NGS still remains challenging and requires
comparisons with databases such as dbSNP and 1000 ge-
nomes project [3, 16]. Another valuable resource in
interpreting own experimental data is the EXAC browser pro-
vided by the Broad Institute at www.exac.broadinstitute.org. It
meanwhile provides exome data from more than 60,000
unrelated individuals. Before definitive conclusions can be
drawn, the functional consequences of identified mutations
on protein structure and function often have to be
demonstrated experimentally [43]. In addition, a frequent
conceptual misunderstanding relates to the fact that even a
mutation with profound impact on protein function does not
automatically proves its pathogenicity and disease-causing
effect.

Each of us carries an average of approximately 3000 single
nucleotide polymorphisms (SNPs) in terms of individual
SNPs. To generate a personal cancer genome signature for
molecular targeted therapy, it is important to discriminate be-
tween these individual SNPs and somatic (tumor) mutations.
Thus, comparing the NGS data of tumor versus germline
DNA is a condition sine qua non to identify the somatically
acquired genetic variants of the tumor.

However, NGS not only generates focused genetic re-
sults with precise clinical implications for treatment but
also so-called incidental findings with possible, limited,
or unknown clinical impact or might even uncover an
underlying susceptibility to cancer and other hereditary
diseases. Such incidental findings are divided into
“anticipatable” and “unanticipatable” ones. The former is
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a finding that is known to be associated with the test and
is possible to be found. The latter could not have been
anticipated given the current state of scientific knowledge
[17]. Hence, treating physicians will increasingly be faced
with such incidental genetic findings and the difficulties of
interpreting and reporting these results.

Moreover, the pediatric oncologist is confronted with
one new situation in particular: the fact that genetic events
within the tumor genome itself can point toward underly-
ing germline cancer susceptibility. Thus, even if not ini-
tially aimed to detect a CSS, the somatic “molecular
make-up” of the tumor genome may suggest a germline
mutation in a CSS gene.

Up to now, there are two well-known findings in tumor
genetics which can be indicative that the tumor arose on the
basis of the child’s germline alteration, (a) chromothripsis and
(b) a high total number of mutational events which exceeds
that of other samples of the same tumor type.

(a) The phenomenon of chromothripsis was first reported by
Stephens in 2011 [44]. The term “chromothripsis”
(“chromo” from chromosome; “thripsis” for shattering
into pieces) describes the shattering of a chromosome or
a chromosomal region into tens to hundreds of pieces and
locally clustered reassembling of some of the genomic
fragments while others are lost to the cell.

According to Stephens [44], chromothripsis is defined by
six features: (1) rearrangements localized within the genome,
(2) oscillating changes of the copy number profile between
one and two copies, whereby (3) loss of heterozygosity
(LOH) causes a copy number of one, and retaining heterozy-
gosity a copy number of two, (4) clustering of breakpoints
across the chromosome, (5) conjunction of two remote chro-
mosome fragments, and (6) joining rearrangements between
two chromosome arms with clustering at the breakpoints.
Rapid oscillations between copy number states one and two
within the whole or parts of the chromosome characterizes the
copy number profile in case of chromothripsis.

In contrast to common theories of cancer evolution through
progressive accumulation of genomic alterations such as on-
cogene activation and tumor suppressor loss through environ-
mental and lifestyle factors in adults, chromothripsis as a sin-
gle catastrophic event might be involved in the development
of a variety of cancers in childhood. It can cause the formation
of new gene fusions, disruption of tumor suppressors, and
amplification of oncogenes [35, 44]. In adults, 2-3 % of all
cancers show evidence of chromothripsis; in bone cancers,
this incidence is especially high with 25 % [44]. The impact
of chromothripsis on cancer gene function and cancer devel-
opment in childhood has already been demonstrated for many
different tumor entities, e.g., ALL, AML, ependymoma, me-
dulloblastoma, neuroblastoma, and retinoblastoma [4, 23, 26,

28, 30, 31, 35]. In addition, chromothripsis has been associat-
ed with poor prognosis in neuroblastoma [28]. A list of pedi-
atric tumors, in which chromothripsis has been described, is
given in Table 2. Conversely, alterations in TP53 have been
shown for low-hypodiploid ALL but without chromothriptic
pattern [15].

(b) To provide a comprehensive landscape of somatic geno-
mic alterations (termed mutational signatures) in cancer
genomes, numerous cancers have been profiled by DNA
sequencing [2, 34, 45]. The occurring genomic alter-
ations are presumably caused by defective DNA replica-
tion or repair and exogenous or endogenous mutagen
exposure and include substitutions, insertions or dele-
tions, rearrangements, copy number alterations,
completely new sequences from exogenous sources,
and combinations of all these possibilities. The preva-
lence of such mutations is highly variable between can-
cer (sub)types [2, 22]. Due to extensive exposure to car-
cinogens, small cell lung cancer (tobacco) and malignant
melanoma (ultraviolet light) show the highest somatic
mutation prevalence (over 100/Megabase (Mb)). In con-
trast, the mutation rate in pediatric cancers is lowest (0.1/
Mb; approximately one change across the entire exome)
as chronic mutagenic exposure plays a minor part in
carcinogenesis in childhood [22]. An outline of mutation
frequencies in various (pediatric) cancer types is given in
Table 3.

Alexandrov et al. [2] described a mutational signature with
very large numbers of substitutions and small indels, the latter
at short nucleotide repeats and with overlapping
microhomology at breakpoint junctions, termed
“microsatellite instability,” which is characteristic of cancers
with defective DNA mismatch repair and may suggest consti-
tutional mismatch repair-deficiency syndrome (CMMR-D) in
childhood.

As was shown by Rausch et al. [35], the single nucleotide
variant (SNV) rate of children with Sonic-Hedgehog medul-
loblastoma (SHH-MB) is clearly higher (24 tumor-specific
SNVs) in the case of inherited TP53 mutations compared to
sporadic pediatric medulloblastoma samples (average 5.7
non-synonymous SNVs per sample; [32]). Thus, comparing
the patient’s SNV with the average SNV rate of a given tumor
entity, an increased mutation frequency (SNV rate) detected
by NGS of the tumor again may point to an underlying CSS
(Li-Fraumeni syndrome).

Ethical and legal issues
“Are our other children at an increased risk of developing

cancer?” Parents of a child diagnosed with cancer frequently
raise this question. Up to now, pediatric oncologists mostly
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Table 2 Examples of (pediatric)

tumors associated with Tumor

References

chromothripsis
Burkitt lymphoma *

Brain tumors

» Ependymoma

* High-grade gliomas
* Medulloblastoma
-Sonic-Hedgehog
~Group 3

Hodgkin lymphoma *
Leukemia

* AML

* ALL iIAMP21)
Neuroblastoma

Osteosarcoma *
Phaeochromocytoma (PCC) /
Paraganglioma (PGL) *

Retinoblastoma

Sarova et al., Cancer Genet 2014
« Parker et al., Nature 2014
 Zhao et al., Neuro Oncol 2014
—-Rausch et al., Cell 2012
—Northcott et al., Nature 2012

Nagel et al., Genes Chromosomes Cancer 2013
« Rausch et al., Cell 2012
* Harrison et al., Blood 2015; Li et al., Nature 2014

Ambros et al., Frontiers in Oncology 2014; Boeva et al.,
PLoS One 2013; Molenaar et al., Nature 2012

Stephens et al., Cell 2011
Flynn et al., J Pathol 2014

McEvoy et al., Oncotarget 2014

*Described in adult tumor samples

reassure them that cancer in children usually is not hereditary
but an exceptionally bad stroke of fate. However, will this
statement still hold true in the future with ever-increasing
knowledge about underlying cancer predisposition syndromes
and inherited cancer susceptibilities in childhood?

The incidental finding of chromothripsis and its association
with Li-Fraumeni syndrome in SHH-MB patients very well
demonstrates the far-reaching consequences of translational
research and genetic testing in pediatric oncology with its
challenges for scientists, treating physicians, and the affected
child and his entire family.

Table 3  Examples of mutation frequencies in (pediatric) tumors

By detecting chromothripsis in a tumor, further genetic
testing for germline p53 mutations is highly advisable as this
phenomenon might be attributable to an underlying Li-
Fraumeni syndrome. The latter obviously represents an impor-
tant piece of clinical information as it will guide treatment,
surveillance, and further early cancer screening programs
[21, 46].

According to the recommendations of national and interna-
tional human genetic societies and the legislation of most Euro-
pean countries, prior to genetic testing, the child (wherever pos-
sible) and the parents must be informed in detail, preferences as

Malignancy Mutations (range)

Reference

AML?

Ependymoma, intracranial®
Ependymoma, spinal cord”

Ewing®

Glioblastoma multiforme®
Glioblastoma, non-brainstem pediatric
MDS"

Medulloblastoma

Neuroblastoma
Rhabdoid cancers

Xanthoastrocytoma, pleornorphicb

0.37 per Mb (0.01-10) of coding sequence
12.8+10.6 mutations (range 5 to 34) per tumor
12.946.4 mutations (range 2 to 23) per tumor

0.15 per Mb of coding sequence

1.4 per Mb

23.5+11.2 mutations (range 4-46) per tumor

3 (0-12) mutations per sample in 104 cancer genes

8.3 non-synonymous SNVs per sample
0.35 non-silent mutations per megabase

0.60 per Mb of coding regions
0.19 per Mb (0-0.45) of coding regions
9.5+8.5 mutations (range 1 to 28) per tumor

Lawrence et al., Nature 2013

Bettegowda et al., Oncotarget 2013

Bettegowda et al., Oncotarget 2013

Brohl et al., PLoS Genet 2014

Cancer Genome Atlas Research Network, Nature 2008
Bettegowda et al., Oncotarget 2013

Haferlach et al., Leukemia 2014

Parsons et al., Science 2011
Pugh et al., Nature 2012

Pugh et al., Nature Genet 2013
Lee et al., J Clin Invest 2012
Bettegowda et al., Oncotarget 2013

# Tumor samples not specified

® Described in adult tumor samples
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to which findings should be reported must be assessed, and
written informed consent must be obtained. This is a well-
established standard of care for targeted molecular testing an
affected individual or suspected carrier for a specific hereditary
condition. However, NGS is likely, apart from the initial indica-
tion to perform it, to uncover incidental findings, such as an
underlying CSS as well as non-cancer-related germline muta-
tions (e.g., CFTR, Huntington’s disease) with varying clinical
importance for the patient. In order to comply with the afore-
mentioned recommendations, this would require extensive ge-
netic counseling of the child/parents of a child diagnosed with
cancer undergoing NGS of the tumor prior to testing, which
would have to encompass both incidental findings with possible,
limited, or unknown clinical impact and numerous results unre-
lated to the indication for NGS [42]. We believe that this is
highly impractical in the daily life of a pediatric hemato-
oncologist as disclosing the diagnosis of cancer itself is over-
whelming and dramatically limits the child’s/parents’ receptivity,
and NGS of the tumor often has to be initiated at the time of
diagnosis. However, whenever NGS is initiated, the treating
physician has an obligation to discuss the full range of generated
data and the possibility of incidental findings and its disclosure
with the child/parents. Furthermore, the ordering physician is
responsible for obtaining informed consent and providing pre-
and post-test counseling. Thus, regarding the child’s/parents’
autonomy and both their right to access all NGS data and their
“right not to know,” they should be informed of the benefits,
risks, and alternatives of genetic testing in detail [5, 7, 12]. When
the patient/parent refuses to be informed about incidental find-
ings, even if disclosure leads to beneficial interventions, the phy-
sician must ensure that adequate information has preceded this
refusal. However, most clinicians do not have sufficient training
in NGS and need to be extensively trained for clinical translation
and reporting of NGS data.

In contrast to the standards for genetic testing in adults,
predictive testing in pediatric patients is only recommended
when the disease is associated with childhood onset and only
with available effective screening and/or intervention options
[7, 39]. Refraining from predictive testing of children allows
them to autonomously make this decision once they reach
adulthood.

Last but not least, identifying children with hereditary can-
cer predispositions has immediate consequences for the entire
family (siblings, parents, and extended family) [20, 25, 42].
Due to the young age of the index patient, potentially affected
relatives might as well be young and yet asymptomatic. Hav-
ing been tested themselves might—depending on the out-
come—influence their family planning but will of course also
provide an excellent opportunity to initiate early cancer sur-
veillance programs which they will benefit from. However,
genetic testing and tumor surveillance can have deeply affect-
ing psychological consequences for the child and the family,
emotional support should thus be in place for the families.

Clear legislation on returning genetic results in oncology are
still missing. Lolkema et al. have thoroughly addressed the
accompanying ethical, legal, and counseling challenges [25].
Comprehensive ethical recommendations on how to report re-
search results to patients and parents are, for example, given by
the American College of Medical Genetics and Genomics, the
Boston Children’s Hospital, the American Academy of Pediat-
rics, the “EURAT” (Ethical and legal aspects of whole human
genome sequencing) project of the Marsilius Kolleg of Heidel-
berg University, and the Leopoldina National Academy of Sci-
ences Germany [5, 12, 14, 27, 39]. However, their practical
implementation in day-to-day clinical life remains challenging.

Conclusions

Genetic testing and translational research in pediatric oncolo-
gy provides new and exciting insights into the evolution and
pathogenesis of childhood cancer. On the other hand, it can
incidentally uncover an underlying cancer susceptibility syn-
drome with implications not only for the child but also for the
entire family. Pediatric oncologists should therefore increase
their awareness of chances and risks that accompany the in-
creasingly wide clinical implementation of NGS platforms
[42, 43].
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