Skip to main content
Log in

A new myeloarchitectonic map of the human neocortex based on data from the Vogt–Vogt school

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

An Erratum to this article was published on 11 September 2014

Abstract

The human cerebral cortex contains numerous myelinated fibres, the arrangement and density of which is by no means homogeneous throughout the cortex. Local differences in the spatial organization of these fibres render it possible to recognize areas with a different myeloarchitecture. The neuroanatomical subdiscipline aimed at the identification and delineation of such areas is known as myeloarchitectonics. During the period extending from 1910 to 1970, Oscar and Cécile Vogt and their numerous collaborators (The Vogt–Vogt school) published a large number of myeloarchitectonic studies on the cortex of the various lobes of the human cerebrum. Recently, one of us (Nieuwenhuys in Brain Struct Funct 218: 303–352, 2013) extensively reviewed these studies. It was concluded that the data available are adequate and sufficient for the composition of a myeloarchitectonic map of the entire human neocortex. The present paper is devoted to the creation of this map. Because the data provided by the Vogt–Vogt school are derived from many different brains, a standard brain had to be introduced to which all data available could be transferred. As such, the colin27 structural scan, aligned to the MNI305 template was selected. The procedure employed in this transfer involved computer-aided transformations of the lobar maps available in the literature, to the corresponding regions of the standard brain, as well as local adjustments in the border zones of the various lobes. The resultant map includes 180 myeloarchitectonic areas, 64 frontal, 30 parietal, 6 insular, 17 occipital and 63 temporal. The designation of the various areas with simple Arabic numbers, introduced by Oscar Vogt for the frontal and parietal cortices, has been extended over the entire neocortex. It may be expected that combination of the myeloarchitectonic data of the Vogt–Vogt school, as expressed in our map, with the results of the detailed cytoarchitectonic and receptor architectonic studies of Karl Zilles and Katrin Amunts and their numerous associates, will yield a comprehensive ‘supermap’ of the structural organization of the human neocortex. For the time being, i. e., as long as this ‘supermap’ is not yet available, our map may provide a tentative frame of reference for (a) the morphological interpretation of the results of functional neuroimaging studies; (b) the selection of starting points (seed voxels, regions-of-interest) in diffusion tractography studies and (c) the interpretation of putative myeloarchitectonic features, visualized by in vivo and ex vivo mappings of the cerebral cortex with high-field magnetic resonance imaging.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

Abbreviations

acg:

Anterior cingulate gyrus

ambg:

Ambient gyrus

ang:

Angular gyrus

aog:

Anterior orbital gyrus

aos:

Arcuate orbital sulcus

asg:

Accessory short gyrus of insula

attg:

Anterior transverse temporal gyrus

atts:

Anterior transverse temporal sulcus

calcs:

Calcarine sulcus

ces:

Central sulcus

cesins:

Central sulcus of insula

cisins:

Circular sulcus of insula

cols:

Collateral sulcus

cs:

Cingulate sulcus

csab:

Cingulate sulcus, ascending branch

cun:

Cuneus

fg:

Fasciolar gyrus

icg:

Isthmus of cingular gyrus

ifg:

Inferior frontal gyrus

ifgor:

Inferior frontal gyrus, orbital part

ifgop:

Inferior frontal gyrus, opercular part

ifgt:

Inferior frontal gyrus, triangular part

ifs:

Inferior frontal sulcus

ipl:

Inferior parietal lobule

ips:

Intraparietal sulcus

itg:

Inferior temporal gyrus

its:

Inferior temporal sulcus

lg1, 2:

First and second long gyrus of insula

log:

Lateral orbital gyrus

los:

Lateral orbital sulcus

lotg:

Lateral occipitotemporal (fusiform) gyrus

ls:

Lateral sulcus

lsab:

Lateral sulcus, ascending branch

lsan:

Lateral sulcus, anterior branch

lsp:

Lateral sulcus, posterior branch

mfg:

Middle frontal gyrus

mog:

Medial orbital gyrus

mos:

Medial orbital sulcus

motg:

Medial occipitotemporal (lingual) gyrus

mtg:

Middle temporal gyrus

mtps:

Medial temporopolar sulcus

mtts:

Middle transverse temporal sulcus

og:

Occipital gyri

olfs:

Olfactory sulcus

ots:

Occipitotemporal sulcus

pcg:

Posterior cingulate gyrus

pcl:

Paracentral lobule

pcun:

Precuneus

phg:

Parahippocampal gyrus

pocg:

Postcentral gyrus

pocs:

Postcentral sulcus

pog:

Posterior orbital gyrus

pos:

Parieto-occipital sulcus

prcg:

Precentral gyrus

prcs:

Precentral sulcus

pron:

Preoccipital notch

pttg:

Posterior transverse temporal gyrus

ptts:

Posterior transverse temporal sulcus

rhs:

Rhinal sulcus

ris:

Rostral inferior sulcus

rss:

Rostral superior sulcus

sfg:

Superior frontal gyrus

sfs:

Superior frontal sulcus

sg1, 2, 3:

First, second and third short gyrus of insula

smg:

Supramarginal gyrus

spl:

Superior parietal lobule

stg:

Superior temporal gyrus

strg:

Straight gyrus

sts:

Superior temporal sulcus

stsp:

Superior temporal sulcus, posterior part

tp:

Temporal plane

unc:

Uncus of hippocampus

References

  • Amunts K, Zilles K (2012) Architecture and organizational principles of Broca’s region. Trends Cogn Sci 16:418–426. doi:10.1016/j.tics.2012.06.005

    Article  PubMed  Google Scholar 

  • Amunts K, Lenzen M, Friederici AD, Schleicher A, Morosan P, Palomero-Gallagher N, Zilles K (2010) Broca’s region: novel organizational principles and multiple receptor mapping. PLoS Biol 8(9):e1000489. doi:10.1371/journal.pbio.1000489

    Article  PubMed Central  PubMed  Google Scholar 

  • Bailey P, von Bonin G (1951) The isocortex of man. University of Illinois Press, Urbana

    Google Scholar 

  • Baillarger JGF (1840) Recherches sur la structure de la couche corticale des circonvolutions du cerveau. Mém Acad R Méd 8:149–183

    Google Scholar 

  • Batsch EG (1956) Die myeloarchitektonische Untergliederung des Isocortex parietalis beim Menschen. J Hirnforsch 2:225–258

  • Bazin PL, Weiss M, Dinse J, Schafer A, Trampel R, Turner R (2013) A computational framework for ultra-high resolution cortical segmentation at 7 tesla. Neuroimage. doi:10.1016/j.neuroimage.2013.03.077

    Google Scholar 

  • Bludau S, Eickhoff SB, Mohlberg H, Caspers S, Laird AR, Fox PT, Schleicher A, Zilles K, Amunts K (2013) Cytoarchitecture, probability maps and functions of the human frontal pole. Neuroimage. doi:10.1016/j.neuroimage.2013.05.052

    PubMed  Google Scholar 

  • Braitenberg V (1956) Die Gliederung der Stirnhirnrinde auf Grund ihres Markfaserbaus (Myeloarchitektonik). In: Rehwald E (ed) Das Hirntrauma. Thieme, Stuttgart, pp 183–203

    Google Scholar 

  • Braitenberg V (1962) A note on myeloarchitectonics. J Comp Neurol 118:141–156

    Article  CAS  PubMed  Google Scholar 

  • Braitenberg V (1974) Thoughts on the cerebral cortex. J Theor Biol 46:421–447

    Article  CAS  PubMed  Google Scholar 

  • Braitenberg V (1978) Cortical architectonics: general and areal. In: Brazier MAB, Petsche H (eds) Architectonics of the cerebral cortex. Raven Press, New York, pp 443–468

    Google Scholar 

  • Brockhaus H (1940) Die Cyto- und Myeloarchitektonik des Cortex claustralis und des Claustrum beim Menschen. J Psychol Neurol 49:249–348

    Google Scholar 

  • Brodmann K (1909) Vergleichende Lokalisationslehre der Grosshirnrinde in ihren Prinzipien dargestellt und Grund des Zellenbaues. J.A. Barth, Leipzig

    Google Scholar 

  • Brodmann K (1914) Physiologie des Gehirns. In: Von Bruns P (ed) Neue deutsche Chirurgie. vol 11 Pt. 1. Enke, Stuttgart, pp 85–426

  • Campbell AW (1905) Histological studies on the localisation of cerebral function. Cambridge University Press, Cambridge

    Google Scholar 

  • Caspers S, Geyer S, Schleicher A, Mohlberg H, Amunts K, Zilles K (2006) The human inferior parietal cortex: cytoarchitectonic parcellation and interindividual variability. Neuroimage 33:430–448. doi:10.1016/j.neuroimage.2006.06.054

    Article  PubMed  Google Scholar 

  • Caspers S, Eickhoff SB, Geyer S, Scheperjans F, Mohlberg H, Zilles K, Amunts K (2008) The human inferior parietal lobule in stereotaxic space. Brain Struct Funct 212:481–495. doi:10.1007/s00429-008-0195-z

    Article  PubMed  Google Scholar 

  • Collins DL (1994) 3D Model-based segmentation of individual brain structures from magnetic resonance imaging data. PhD Thesis, McGill University

  • Eickhoff SB, Schleicher A, Zilles K, Amunts K (2006a) The human parietal operculum. I. Cytoarchitectonic mapping of subdivisions. Cereb Cortex 16:254–267. doi:10.1093/cercor/bhi105

    Article  PubMed  Google Scholar 

  • Eickhoff SB, Amunts K, Mohlberg H, Zilles K (2006b) The human parietal operculum. II. Stereotaxic maps and correlation with functional imaging results. Cereb Cortex 16:268–279. doi:10.1093/cercor/bhi106

    Article  PubMed  Google Scholar 

  • Eickhoff SB, Rottschy C, Kujovic M, Palomero-Gallagher N, Zilles K (2008) Organizational principles of human visual cortex revealed by receptor mapping. Cereb Cortex 18:2637–2645. doi:10.1093/cercor/bhn024

    Article  PubMed Central  PubMed  Google Scholar 

  • Elliot Smith G (1907) A new topographical survey of the human cerebral cortex, being an account of the distribution of the anatomically distinct cortical areas and their relationship to the cerebral sulci. J Anat Physiol 41:237–254

    Google Scholar 

  • Gerhardt E (1940) Die Cytoarchitektonik des Isocortex parietalis beim Menschen. J Psychol Neurol 49:367–419

    Google Scholar 

  • Geyer S (2013) High-field magnetic resonance mapping of the border between primary motor (area 4) and somatosensory (area 3a) cortex in ex-vivo and in-vivo human brains. In: Geyer S, Turner R (eds) Microstructural parcellation of the human cerebral cortex. Springer, Berlin, Heidelberg, pp 239–254. doi:10.1007/978-3-642-37824-9_9

    Chapter  Google Scholar 

  • Geyer S, Ledberg A, Schleicher A, Kinomura S, Schormann T, Burgel U, Klingberg T, Larsson J, Zilles K, Roland PE (1996) Two different areas within the primary motor cortex of man. Nature 382:805–807. doi:10.1038/382805a0

    Article  CAS  PubMed  Google Scholar 

  • Geyer S, Schleicher A, Zilles K (1997) The somatosensory cortex of human: cytoarchitecture and regional distributions of receptor-binding sites. Neuroimage 6:27–45. doi:10.1006/nimg.1997.0271

    Article  CAS  PubMed  Google Scholar 

  • Geyer S, Weiss M, Reimann K, Lohmann G, Turner R (2011) Microstructural parcellation of the human cerebral cortex—from Brodmann’s post-mortem map to in vivo mapping with high-field magnetic resonance imaging. Front Hum Neurosci 5:19. doi:10.3389/fnhum.2011.00019

    Article  PubMed Central  PubMed  Google Scholar 

  • Glasser MF, Van Essen DC (2011) Mapping human cortical areas in vivo based on myelin content as revealed by T1- and T2-weighted MRI. J Neurosci 31:11597–11616. doi:10.1523/JNEUROSCI.2180-11.2011

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Glasser MF, Goyal MS, Preuss TM, Raichle ME, Van Essen DC (2013) Trends and properties of human cerebral cortex: correlations with cortical myelin content. Neuroimage. doi:10.1016/j.neuroimage.2013.03.060

    Google Scholar 

  • Gong G, He Y, Concha L, Lebel C, Gross DW, Evans AC, Beaulieu C (2009) Mapping anatomical connectivity patterns of human cerebral cortex using in vivo diffusion tensor imaging tractography. Cereb Cortex 19:524–536. doi:10.1093/cercor/bhn102

    Article  PubMed Central  PubMed  Google Scholar 

  • Hagmann P, Kurant M, Gigandet X, Thiran P, Wedeen VJ, Meuli R, Thiran JP (2007) Mapping human whole-brain structural networks with diffusion MRI. PLoS One 2:e597. doi:10.1371/journal.pone.0000597

    Article  PubMed Central  PubMed  Google Scholar 

  • Hellwig B (1993) How the myelin picture of the human cerebral cortex can be computed from cytoarchitectural data. A bridge between von Economo and Vogt. J Hirnforsch 34:387–402

    CAS  PubMed  Google Scholar 

  • Holmes CJ, Hoge R, Collins L, Woods R, Toga AW, Evans AC (1998) Enhancement of MR images using registration for signal averaging. J Comput Assist Tomogr 22:324–333

    Article  CAS  PubMed  Google Scholar 

  • Hopf A (1954) Die Myeloarchitektonik des Isocortex temporalis beim Menschen. J Hirnforsch 1:208–279

    Google Scholar 

  • Hopf A (1955) Über die Verteilung myeloarchitektonischer Merkmale in der isokortikalen Schläfenlappenrinde beim Menschen. J Hirnforsch 2:36–54

    Google Scholar 

  • Hopf A (1956) Über die Verteilung myeloarchitektonischer Merkmale in der Stirnhirnrinde beim Menschen. J Hirnforsch 2:311–333

    CAS  PubMed  Google Scholar 

  • Hopf A (1964) Localization in the cerebral cortex from the anatomical point of view. Cerebral localization and organization. University of Wisconsin Press, Madison, pp 5–10

    Google Scholar 

  • Hopf A (1966) Uber eine Methode zur objektiven Registrierung der Myeloarchitektonik der Hirnrinde. J Hirnforsch 8:301–313

    CAS  PubMed  Google Scholar 

  • Hopf A (1968a) Photometric studies on the myeloarchitecture of the human temporal lobe. J Hirnforsch 10:285–297

    CAS  PubMed  Google Scholar 

  • Hopf A (1968b) Registration of the myeloarchitecture of the human frontal lobe with an extinction method. J Hirnforsch 10:259–269

    CAS  PubMed  Google Scholar 

  • Hopf A (1969) Photometric studies on the myeloarchitecture of the human parietal lobe. I. Parietal region. J Hirnforsch 11:253–265

    CAS  PubMed  Google Scholar 

  • Hopf A (1970) Photometric studies on the myeloarchitecture of the human parietal lobe. II. Postcentral region. J Hirnforsch 12:135–141

    CAS  PubMed  Google Scholar 

  • Hopf A, Vitzthum HG (1957) Über die Verteilung myeloarchitektonischer Merkmale in der Scheitellappenrinde beim Menschen. J Hirnforsch 3:79–104

    CAS  PubMed  Google Scholar 

  • Jones EG (2008) Cortical maps and modern phrenology. Brain 131:2227–2233

    Article  Google Scholar 

  • Kurth F, Eickhoff SB, Schleicher A, Hoemke L, Zilles K, Amunts K (2010) Cytoarchitecture and probabilistic maps of the human posterior insular cortex. Cereb Cortex 20:1448–1461. doi:10.1093/cercor/bhp208

    Article  PubMed Central  PubMed  Google Scholar 

  • Lacarme O, Delvare K (2013) The Book of Gimp; a complete guide to nearly everything. No Starch Press, San Francisco

    Google Scholar 

  • Le Gros Clark WE (1952) A note on cortical cyto-architectonics. Brain 75:96–104

    Article  Google Scholar 

  • Li L, Hu X, Preuss TM, Glasser MF, Damen FW, Qiu Y, Rilling J (2013) Mapping putative hubs in human, chimpanzee and rhesus macaque connectomes via diffusion tractography. Neuroimage 80:462–474. doi:10.1016/j.neuroimage.2013.04.024

    Article  PubMed Central  PubMed  Google Scholar 

  • Lungwitz W (1937) Zur myeloarchitektonischen Untergliederung der menschlichen Area praeoccipitalis (Area 19 Brodmann). J Psychol Neurol 47:607–639

    Google Scholar 

  • Lutti A, Dick F, Sereno MI, Weiskopf N (2013) Using high-resolution quantitative mapping of r1 as an index of cortical myelination. Neuroimage. doi:10.1016/j.neuroimage.2013.06.005

    PubMed Central  Google Scholar 

  • Mazziotta J, Toga A, Evans A, Fox P, Lancaster J, Zilles K, Woods R, Paus T, Simpson G, Pike B (2001) A probabilistic atlas and reference system for the human brain: international consortium for brain mapping (icbm). Philos Trans R Soc London B Biol Sci 356:1293–1322

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Morosan P, Schleicher A, Amunts K, Zilles K (2005) Multimodal architectonic mapping of human superior temporal gyrus. Anat Embryol (Berl) 210:401–406. doi:10.1007/s00429-005-0029-1

    Article  CAS  Google Scholar 

  • Ngowyang G (1934) Die Cytoarchitektonik des menschlichen Stirnhirns, I. Teil. Cytoarchitektonische Felderung der Regio granularis und Regio dysgranularis. Natl Res Inst Psychol Sinica 7:1

    Google Scholar 

  • Nieuwenhuys R (2013) The myeloarchitectonic studies on the human cerebral cortex of the Vogt–Vogt school, and their significance for the interpretation of functional neuroimaging data. Brain Struct Funct 218:303–352. doi:10.1007/s00429-012-0460-z

    Article  PubMed  Google Scholar 

  • Öngür D, Ferry AT, Price JL (2003) Architectonic subdivision of the human orbital and medial prefrontal cortex. J Comp Neurol 460:425–449. doi:10.1002/cne.10609

    Article  PubMed  Google Scholar 

  • Palomero-Gallagher N, Mohlberg H, Zilles K, Vogt B (2008) Cytology and receptor architecture of human anterior cingulate cortex. J Comp Neurol 508:906–926. doi:10.1002/cne.21684

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Roland PE, Zilles K (1998) Structural divisions and functional fields in the human cerebral cortex. Brain Res Brain Res Rev 26:87–105

    Article  CAS  PubMed  Google Scholar 

  • Sanides F (1962) Die Architektonik des menschlichen Stirnhirns. In: Müller M, Spatz H, Vogel P (eds) Monographien aus dem Gesamtgebiete der Neurologie und Psychiatrie, vol 98. Springer, Berlin, Göttingen, Heidelberg

    Google Scholar 

  • Sanides F (1964) The cyto-myeloarchitecture of the human frontal lobe and its relation to phylogenetic differentiation of the cerebral cortex. J Hirnforsch 47:269–282

    Google Scholar 

  • Sarkissov S, Filimonoff I, Kononowa E, Preobraschenskaja I, Kukuew L (1955) Atlas of the cytoarchitectonics of the human cerebral cortex. Moscow: Medgiz 20

  • Scheperjans F, Grefkes C, Palomero-Gallagher N, Schleicher A, Zilles K (2005) Subdivisions of human parietal area 5 revealed by quantitative receptor autoradiography: a parietal region between motor, somatosensory, and cingulate cortical areas. Neuroimage 25:975–992

    Article  PubMed  Google Scholar 

  • Scheperjans F, Eickhoff SB, Homke L, Mohlberg H, Hermann K, Amunts K, Zilles K (2008a) Probabilistic maps, morphometry, and variability of cytoarchitectonic areas in the human superior parietal cortex. Cereb Cortex 18:2141–2157. doi:10.1093/cercor/bhm241

    Article  PubMed Central  PubMed  Google Scholar 

  • Scheperjans F, Hermann K, Eickhoff SB, Amunts K, Schleicher A, Zilles K (2008b) Observer-independent cytoarchitectonic mapping of the human superior parietal cortex. Cereb Cortex 18:846–867. doi:10.1093/cercor/bhm116

    Article  PubMed  Google Scholar 

  • Schleicher A, Palomero-Gallagher N, Morosan P, Eickhoff SB, Kowalski T, de Vos K, Amunts K, Zilles K (2005) Quantitative architectural analysis: a new approach to cortical mapping. Anat Embryol (Berl) 210:373–386. doi:10.1007/s00429-005-0028-2

    Article  CAS  Google Scholar 

  • Schleicher A, Morosan P, Amunts K, Zilles K (2009) Quantitative architectural analysis: a new approach to cortical mapping. J Autism Dev Disord 39:1568–1581. doi:10.1007/s10803-009-0790-8

    Article  PubMed  Google Scholar 

  • Sholl DA (1956) The organization of the cerebral cortex. Methuen, London

    Google Scholar 

  • Sporns O (2011) The human connectome: a complex network. Ann N Y Acad Sci 1224:109–125. doi:10.1111/j.1749-6632.2010.05888.x

    Article  PubMed  Google Scholar 

  • Sporns O, Tononi G, Kotter R (2005) The human connectome: a structural description of the human brain. PLoS Comput Biol 1:e42. doi:10.1371/journal.pcbi.0010042

    Article  PubMed Central  PubMed  Google Scholar 

  • Strasburger EH (1937) Die myeloarchitektonische Gliederung des Stirnhirns beim Menschen und Schimpansen - I. J Psychol Neurol 47:460–491

    Google Scholar 

  • Strasburger EH (1938) Vergleichende myeloarchitektonische Studien an der erweiterten Brocaschen Region des Menschen. J Psychol Neurol 48:477–511

    Google Scholar 

  • Talairach J, Tournoux P (1988) Coplanar stereotaxic atlas of the human brain: threedimensional proportional system: an approach to cerebral imaging. Thieme Medical Publishers, New York

    Google Scholar 

  • Toga AW, Thompson PM (2007) What is where and why it is important. Neuroimage 37:1045–1049. doi:10.1016/j.neuroimage.2007.02.018 (discussion 1066–1048)

    Article  PubMed Central  PubMed  Google Scholar 

  • Turner R, Geyer S (2014) Introduction to the neuroimage special issue: “In vivo Brodmann mapping of the human brain”. NeuroImage. doi:10.1016/j.neuroimage.2014.01.018

    Google Scholar 

  • Van Essen DC, Glasser MF (2013) In vivo architectonics: a cortico-centric perspective. Neuroimage. doi:10.1016/j.neuroimage.2013.04.095

    Google Scholar 

  • Van Essen DC, Glasser MF, Dierker DL, Harwell J, Coalson T (2012) Parcellations and hemispheric asymmetries of human cerebral cortex analyzed on surface-based atlases. Cereb Cortex 22:2241–2262. doi:10.1093/cercor/bhr291

    Article  PubMed Central  PubMed  Google Scholar 

  • Vogt O (1903) Zur anatomischen Gliederung des Cortex cerebri. J Psychol Neurol 2:160–180

    Google Scholar 

  • Vogt O (1906) Über strukturelle Hirnzentra mit besonderer Berücksichtigung der strukturellen Felder des Cortex pallii. Anat Anz 29:74–114

    Google Scholar 

  • Vogt O (1910) Die Myeloarchitektonische Felderung des Menschlichen Stirnhirns. J Psychol Neurol 15:221–232

    Google Scholar 

  • Vogt O (1911) Die Myeloarchitektonik des Isocortex parietalis. J Psychol Neurol 18:379–390

    Google Scholar 

  • Vogt O (1918) Korbinian Brodmann. J Psychol Neurol 24:I-X

  • Vogt O (1951) Die anatomische Vertiefung der menschlichen Hirnlokalisation. Klin Wochenschr 29:111–125

  • Vogt C, Vogt O (1911) Nouvelle contribution à l’étude de la myéloarchitecture de l’écorce cérébrale. XX. Congres des médecins aliénistes et neurologistes de France. Brüssel

  • Vogt C, Vogt O (1919) Allgemeinere Ergebnisse unserer Hirnforschung. J Psychol Neurol 25:279–468

    Google Scholar 

  • Vogt C, Vogt O (1928) Die Grundlagen und die Teildisziplinen der mikroskopischen Anatomie des Zentralnervensystems. Handbuch des mikroskopischen Anatomie des Menschen, vol 4 Teil 1. Springer, Berlin, pp 448–477

    Google Scholar 

  • Vogt C, Vogt O (1954) Gestaltung der topistischen Hirnforschung und ihre Forderung durch den Hirnbau und seine Anomalien. J Hirnforsch 1:1–46

    Google Scholar 

  • Vogt C, Vogt O (1956) Weitere Ausführungen zum Arbeitsprogramm des Hirnforschungsinstitutes in Neustadt/Schwartzwald. J Hirnforsch 2:403–427

  • von Bonin G, Bailey P (1947) The neocortex of Macaca mulatta. Illinois Monographs in Medical Science, vol. 5, No. 4

  • Von Economo C, Koskinas GN (1925) Die Cytoarchitektonik der Hirnrinde des erwachsenen Menschen. Springer, Wien, Berlin

    Google Scholar 

  • Waehnert MD, Dinse J, Weiss M, Streicher MN, Waehnert P, Geyer S, Turner R, Bazin PL (2013) Anatomically motivated modeling of cortical laminae. Neuroimage. doi:10.1016/j.neuroimage.2013.03.078

    PubMed  Google Scholar 

  • Wahren W (1960) Oskar Vogt 6. 4. 1870–31. 7. 1959. Dtsch Z Nervenheilkd 180:361–380

    Article  Google Scholar 

  • Zilles K, Amunts K (2009) Receptor mapping: architecture of the human cerebral cortex. Curr Opin Neurol 22:331–339. doi:10.1097/WCO.0b013e32832d95db

    Article  PubMed  Google Scholar 

  • Zilles K, Amunts K (2010) Centenary of Brodmann’s map–conception and fate. Nat Rev Neurosci 11:139–145. doi:10.1038/nrn2776

    Article  CAS  PubMed  Google Scholar 

  • Zilles K, Palomero-Gallagher N (2001) Cyto-, myelo-, and receptor architectonics of the human parietal cortex. Neuroimage 14:S8–S20. doi:10.1006/nimg.2001.0823

    Article  CAS  PubMed  Google Scholar 

  • Zilles K, Schlaug G, Geyer S, Luppino G, Matelli M, Qu M, Schleicher A, Schormann T (1996) Anatomy and transmitter receptors of the supplementary motor areas in the human and nonhuman primate brain. Adv Neurol 70:29–43

    CAS  PubMed  Google Scholar 

  • Zilles K, Palomero-Gallagher N, Schleicher A (2004) Transmitter receptors and functional anatomy of the cerebral cortex. J Anat 205:417–432. doi:10.1111/j.0021-8782.2004.00357.x

    Article  PubMed Central  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors thank Prof. Lawrence Bannister for critically reading the ‘Materials and methods’ section, Mr. Ton Put for help with the illustrations, Dr. Joris Coppens for carrying out some initial transformations, Dr. Jenneke Kruisbrink for help with the collection of literature, and Suzanne Bakker M. Sc. for moral support and reference management.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rudolf Nieuwenhuys.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nieuwenhuys, R., Broere, C.A.J. & Cerliani, L. A new myeloarchitectonic map of the human neocortex based on data from the Vogt–Vogt school. Brain Struct Funct 220, 2551–2573 (2015). https://doi.org/10.1007/s00429-014-0806-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-014-0806-9

Keywords

Navigation