Skip to main content

Advertisement

Log in

Genomic transcriptional profiling in LOU/C/Jall rats identifies genes for successful aging

  • Original Article
  • Published:
Brain Structure and Function Aims and scope Submit manuscript

Abstract

Inbred LOU/C/Jall rats are currently described as a model of successful aging. These rats have a longer healthy median lifespan than many other strains, do not develop obesity, diabetes, or tumor and more importantly they do not show cognitive decline with aging. This is the first study to examine gene expression changes in the inbred LOU/C/Jall rat hippocampus and frontal cortex. Microarray data from animals aged 5 and 26 months were compared to that obtained from the classical Wistar rat strain to potentially identify only the genes associated with successful aging. We have thus identified a set of 15 genes in the hippocampus and 70 genes in the frontal cortex that could be grouped into several clearly delineated clusters of highly correlated genes associated with a diversity of biological processes, including regulation of plasticity, inflammatory response, metabolic, catabolic and homeostatic processes, and transcription. Such a multiplicity of gene networks and diversity of biological functions were not observed in the Wistar rat strain. The gene expression profiles identified in aged the LOU/C/Jall rats’ hippocampus and frontal cortex should be related to their intact cognitive abilities, such as those assessed through spontaneous alternation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alliot J, Boghossian S, Jourdan D, Veyrat-Durebex C, Pickering G, Meynial-Denis D, Gaumet N (2002) The LOU/c/jall rat as an animal model of healthy aging? J Gerontol A Biol Sci Med Sci 57:B312–B320

    Article  PubMed  Google Scholar 

  • Andresen BT (2010) Characterization of G protein-coupled receptor kinase 4 and measuring its constitutive activity in vivo. Methods Enzymol 484:631–651

    Article  PubMed  CAS  Google Scholar 

  • Bartkowiak B, Liu P, Phatnani HP, Fuda NJ, Cooper JJ, Price DH, Adelman K, Lis JT, Greenleaf AL (2010) CDK12 is a transcription elongation-associated CTD kinase, the metazoan ortholog of yeast Ctk1. Genes Dev 24:2303–2316

    Article  PubMed  CAS  Google Scholar 

  • Blalock EM, Chen KC, Sharrow K, Herman JP, Porter NM, Foster TC, Landfield PW (2003) Gene microarrays in hippocampal aging: statistical profiling identifies novel processes correlated with cognitive impairment. J Neurosci 23:3807–3819

    PubMed  CAS  Google Scholar 

  • Blalock EM, Grondin R, Chen KC, Thibault O, Thibault V, Pandya JD, Dowling A, Zhang Z, Sullivan P, Porter NM, Landfield PW (2010) Aging-related gene expression in hippocampus proper compared with dentate gyrus is selectively associated with metabolic syndrome variables in rhesus monkeys. J Neurosci 30:6058–6071

    Article  PubMed  CAS  Google Scholar 

  • Boghossian S, Nzang Nguema G, Jourdan D, Alliot J (2002) Old as mature LOU/c/jall rats enhance protein selection in response to a protein deprivation. Exp Gerontol 37:1431–1440

    Article  PubMed  CAS  Google Scholar 

  • Bouet V, Freret T, Ankri S, Bezault M, Renolleau S, Boulouard M, Jacotot E, Chauvier D, Schumann-Bard P (2010) Predicting sensorimotor and memory deficits after neonatal ischemic stroke with reperfusion in the rat. Behav Brain Res 212:56–63

    Article  PubMed  Google Scholar 

  • Bouet V, Klomp A, Freret T, Wylezinska-Arridge M, Lopez-Tremoleda J, Dauphin F, Boulouard M, Booij J, Gsell W, Reneman L (2012) Age-dependent effects of chronic fluoxetine treatment on the serotonergic system one week following treatment. Psychopharmacol (Berlin) 221:329–339

    Article  CAS  Google Scholar 

  • Burger C, López MC, Feller JA, Baker HV, Muzyczka N, Mandel RJ (2007) Changes in transcription within the CA1 field of the hippocampus are associated with age-related spatial learning impairments. Neurobiol Learn Mem 87:21–41

    Article  PubMed  CAS  Google Scholar 

  • Burger C, Lopez MC, Baker HV, Mandel RJ, Muzyczka N (2008) Genome-wide analysis of aging and learning-related genes in the hippocampal dentate gyrus. Neurobiol Learn Mem 89:379–396

    Article  PubMed  CAS  Google Scholar 

  • Chen SC, Lu G, Chan CY, Chen Y, Wang H, Yew DT, Feng ZT, Kung HF (2004) Microarray profile of brain aging-related genes in the frontal cortex of SAMP8. J Mol Neurosci 41:12–16

    Article  Google Scholar 

  • Cocco T, Sgobbo P, Clemente M, Lopriore B, Grattagliano I, Di Paolo M, Villani G (2005) Tissue-specific changes of mitochondrial functions in aged rats: effect of a long-term dietary treatment with N-acetylcysteine. Free Radic Biol Med 38:796–805

    Article  PubMed  CAS  Google Scholar 

  • Collet P, Eckmann JP (2002) The number of large graphs with a positive density of triangles. J Stat Phys 1009:923–943

    Article  Google Scholar 

  • Cortopassi GA, Arnheim N (1990) Detection of a specific mitochondrial DNA deletion in tissues of older humans. Nucleic Acids Res 18:6927–6933

    Article  PubMed  CAS  Google Scholar 

  • De Magalhães JP, Curado J, Church GM (2009) Meta-analysis of age-related gene expression profiles identifies common signatures of aging. Bioinformatics 25:875–881

    Article  PubMed  Google Scholar 

  • DeVito LM, Eichenbaum H (2010) Distinct contributions of the hippocampus and medial prefrontal cortex to the “what-where-when” components of episodic-like memory in mice. Behav Brain Res 215:318–325

    Article  PubMed  Google Scholar 

  • Draghici S, Khatri P, Bhavsar P, Shah A, Krawetz SA, Tainsky MA (2003) Onto-Tools, the toolkit of the modern biologist: Onto-Express, Onto-Compare, Onto-Design and Onto-Translate. Nucleic Acids Res 31:3775–3781

    Article  PubMed  CAS  Google Scholar 

  • Dubeau S, Ferland G, Gaudreau P, Beaumont E, Lesage F (2011) Cerebrovascular hemodynamic correlates of aging in the Lou/c rat: a model of healthy aging. Neuroimage 56:1892–1901

    Article  PubMed  CAS  Google Scholar 

  • Eckmann JP, Moses E (2002) Curvature of co-links uncovers hidden thematic layers in the World Wide Web. Proc Natl Acad Sci USA 99:582–589

    Article  Google Scholar 

  • Ellison JA, Barone FC, Feuerstein GZ (1999) Matrix remodeling after stroke. De novo expression of matrix proteins and integrin receptors. Ann NY Acad Sci 890:204–222

    Article  PubMed  CAS  Google Scholar 

  • Fitzgerald J, Kennedy D, Viseshakul N, Cohen BN, Mattick J, Bateman JF, Forsayeth JR (2000) UNCL, the mammalian homologue of UNC-50, is an inner nuclear membrane RNA-binding protein. Brain Res 877:110–123

    Article  PubMed  CAS  Google Scholar 

  • Garait B, Couturier K, Servais S, Letexier D, Perrin D, Batandier C, Rouanet JL, Sibille B, Rey B, Leverve X, Favier R (2005) Fat intake reverses the beneficial effects of low caloric intake on skeletal muscle mitochondrial H(2)O(2) production. Free Radic Biol Med 39:1249–1261

    Article  PubMed  CAS  Google Scholar 

  • Godbout JP, Johnson RW (2006) Age and neuroinflammation: a lifetime of psychoneuroimmune consequences. Neurol Clin 24:521–538

    Article  PubMed  Google Scholar 

  • Haberman RP, Colantuoni C, Stocker AM, Schmidt AC, Pedersen JT, Gallagher M (2011) Prominent hippocampal CA3 gene expression profile in neurocognitive aging. Neurobiol Aging 32:1678–1692

    Article  PubMed  CAS  Google Scholar 

  • Henson BJ, Gollin SM (2010) Overexpression of KLF13 and FGFR3 in oral cancer cells. Cytogenet Genome Res 128:192–198

    Article  PubMed  CAS  Google Scholar 

  • Kadish I, Thibault O, Blalock EM, Chen KC, Gant JC, Porter NM, Landfield PW (2009) Hippocampal and cognitive aging across the lifespan: a bioenergetic shift precedes and increased cholesterol trafficking parallels memory impairment. J Neurosci 29:1805–1816

    Article  PubMed  CAS  Google Scholar 

  • Khatri P, Draghici S, Ostermeier GC, Krawetz SA (2002) Profiling gene expression using onto-express. Genomics 79:266–270

    Article  PubMed  CAS  Google Scholar 

  • Koc EC, Burkhart W, Blackburn K, Moyer MB, Schlatzer DM, Moseley A, Spremulli LL (2001) The large subunit of the mammalian mitochondrial ribosome. Analysis of the complement of ribosomal proteins present. J Biol Chem 276:43958–43969

    Article  PubMed  CAS  Google Scholar 

  • Kollen M, Stéphan A, Faivre-Bauman A, Loudes C, Sinet PM, Alliot J, Billard JM, Epelbaum J, Dutar P, Jouvenceau A (2010) Preserved memory capacities in aged Lou/C/Jall rats. Neurobiol Aging 31:129–142

    Article  PubMed  CAS  Google Scholar 

  • Kotthaus J, Wahl B, Havemeyer A, Kotthaus J, Schade D, Garbe-Schönberg D, Mendel R, Bittner F, Clement B (2011) Reduction of N(ω)-hydroxy-l-arginine by the mitochondrial amidoxime reducing component (mARC). Biochem J 433:383–391

    Article  PubMed  CAS  Google Scholar 

  • Kunzelmann K, Milenkovic VM, Spitzner M, Soria RB, Schreiber R (2007) Calcium-dependent chloride conductance in epithelia: is there a contribution by bestrophin? Pflugers Arch 454:879–889

    Article  PubMed  CAS  Google Scholar 

  • Lalonde R (2002) The neurobiological basis of spontaneous alternation. Neurosci Biobehav Rev 26:91–104

    Article  PubMed  CAS  Google Scholar 

  • Li X, Sakashita G, Matsuzaki H, Sugimoto K, Kimura K, Hanaoka F, Taniguchi H, Furukawa K, Urano T (2004) Direct association with inner centromere protein (INCENP) activates the novel chromosomal passenger protein, Aurora-C. J Biol Chem 279:47201–47211

    Article  PubMed  CAS  Google Scholar 

  • Lombard DB, Chua KF, Mostoslavsky R, Franco S, Gostissa M, Alt FW (2005) DNA repair, genome stability, and aging. Cell 120:497–512

    Article  PubMed  CAS  Google Scholar 

  • Lu T, Pan Y, Kao SY, Li C, Kohane I, Chan J, Yankner BA (2004) Gene regulation and DNA damage in the ageing human brain. Nature 429:883–891

    Article  PubMed  CAS  Google Scholar 

  • Mao L, Takamiya K, Thomas G, Lin DT, Huganir RL (2010) GRIP1 and 2 regulate activity-dependent AMPA receptor recycling via exocyst complex interactions. Proc Natl Acad Sci USA 107:19038–19043

    Article  PubMed  CAS  Google Scholar 

  • Navarro A, López-Cepero JM, Bández MJ, Sánchez-Pino MJ, Gómez C, Cadenas E, Boveris A (2008) Hippocampal mitochondrial dysfunction in rat aging. Am J Physiol Regul Integr Comp Physiol 294:R501–R509

    Article  PubMed  CAS  Google Scholar 

  • O’Brien TW, O’Brien BJ, Norman RA (2005) Nuclear MRP genes and mitochondrial disease. Gene 354:147–151

    Article  PubMed  Google Scholar 

  • Paban V, Farioli F, Romier B, Chambon C, Alescio-Lautier B (2010) Gene expression profile in rat hippocampus with and without memory deficit. Neurobiol Learn Mem 94:42–56

    Article  PubMed  CAS  Google Scholar 

  • Paban V, Chambon C, Farioli F, Alescio-Lautier B (2011) Gene regulation in the rat prefrontal cortex after learning with or without cholinergic insult. Neurobiol Learn Mem 95:441–452

    Article  PubMed  CAS  Google Scholar 

  • Rapp PR, Heindel WC (1994) Memory systems in normal and pathological aging. Curr Opin Neurol 7:294–298

    Article  PubMed  CAS  Google Scholar 

  • Raz A (2004) Anatomy of attentional networks. Anat Rec B New Anat 281:21–36

    Article  PubMed  Google Scholar 

  • Rougemont J, Hingamp P (2003) DNA microarray data and contextual analysis of correlation graphs. BMC Bioinformatics 29:4–15

    Google Scholar 

  • Rowe WB, Blalock EM, Chen KC, Kadish I, Wang D, Barrett JE, Thibault O, Porter NM, Rose GM, Landfield PW (2007) Hippocampal expression analyses reveal selective association of immediate-early, neuroenergetic, and myelinogenic pathways with cognitive impairment in aged rats. J Neurosci 27:3098–3110

    Article  PubMed  CAS  Google Scholar 

  • Senolt L, Grigorian M, Lukanidin E et al (2006) S100A4 is expressed at site of invasion in rheumatoid arthritis synovium and modulates production of matrix metalloproteinases. Ann Rheum Dis 65:1645–1648

    Article  PubMed  CAS  Google Scholar 

  • Small SA (2001) Age-related memory decline: current concepts and future directions. Arch Neurol 58:360–364

    Article  PubMed  CAS  Google Scholar 

  • Steinmetz LM, Scharfe C, Deutschbauer AM, Mokranjac D, Herman ZS, Jones T, Chu AM, Giaever G, Prokisch H, Oefner PJ, Davis RW (2002) Systematic screen for human disease genes in yeast. Nat Genet 31:400–404

    PubMed  CAS  Google Scholar 

  • Stranahan AM, Lee K, Becker KG, Zhang Y, Maudsley S, Martin B, Cutler RG, Mattson MP (2010) Hippocampal gene expression patterns underlying the enhancement of memory by running in aged mice. Neurobiol Aging 31:1937–1949

    Article  PubMed  CAS  Google Scholar 

  • Suzuki M, Hirao A, Mizuno A (2003) Microtubule-associated protein 7 increases the membrane expression of transient receptor potential vanilloid 4 (TRPV4). J Biol Chem 278:51448–51453

    Article  PubMed  CAS  Google Scholar 

  • Turpin FR, Potier B, Dulong JR, Sinet P-M, Alliot J, Oliet SHR, Dutar P, Epelbaum J, Mothet J-P, Billard J-M (2011) Reduced serine racemase expression contributes to age-related deficits in hippocampal cognitive function. Neurobiol Aging 32:1495–1504

    Article  PubMed  CAS  Google Scholar 

  • Veyrat-Durebex C, Alliot J (1997) Changes in pattern of macronutrient intake during aging in male and female rats. Physiol Behav 62:1273–1278

    Article  PubMed  CAS  Google Scholar 

  • Veyrat-Durebex C, Gaudreau P, Coxam V, Gaumet N, Alliot J (1999) Peripheral injection of growth hormone stimulates protein intake in aged male and female Lou rats. Am J Physiol 276:E1105–E1111

    PubMed  CAS  Google Scholar 

  • Vila-Luna S, Cabrera-Isidoro S, Vila-Luna L, Juárez-Díaz I, Bata-García JL, Alvarez-Cervera FJ, Zapata-Vázquez RE, Arankowsky-Sandoval G, Heredia-López F, Flores G, Góngora-Alfaro JL (2012) Chronic caffeine consumption prevents cognitive decline from young to middle age in rats, and is associated with increased length, branching, and spine density of basal dendrites in CA1 hippocampal neurons. Neuroscience 202:384–395

    Article  PubMed  CAS  Google Scholar 

  • Watts DJ, Strogatz SH (1998) Collective dynamics of ‘small-world’ networks. Nature 393:440–442

    Article  PubMed  CAS  Google Scholar 

  • Yang D, Song X, Zhang J, Ye L, Wang S, Che X, Wang J, Zhang Z, Wang L (2010) Suppression of livin gene expression by siRNA leads to growth inhibition and apoptosis induction in human bladder cancer T24 cells. Biosci Biotechnol Biochem 74:1039–1044

    Article  PubMed  CAS  Google Scholar 

  • Yin X, Cao L, Peng Y, Tan Y, Xie M, Kang R, Livesey KM, Tang D (2011) A critical role for UVRAG in apoptosis. Autophagy 7:1242–1244

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Véronique Paban.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 42 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Paban, V., Billard, JM., Bouet, V. et al. Genomic transcriptional profiling in LOU/C/Jall rats identifies genes for successful aging. Brain Struct Funct 218, 1501–1512 (2013). https://doi.org/10.1007/s00429-012-0472-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00429-012-0472-8

Keywords

Navigation