Skip to main content

Advertisement

Log in

Effects of arbuscular mycorrhizal fungi on the nitrogen distribution in endangered Torreya jackii under nitrogen limitation

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Arbuscular mycorrhizal fungi regulated the distribution of nitrogen in the leaves, thereby facilitating the adaptation of the endangered plant Torreya jackii to a low-nitrogen environment.

Abstract

Rhizophagus irregularis was inoculated into sterilized soil to investigate its impact on the distribution ratio of leaf nitrogen in cell wall proteins, cell membrane proteins, water-soluble proteins, and photosynthetic systems which includes the carboxylation system (PC), energy metabolism (PB), and light-harvesting system in the endangered species Torreya jackii. The results showed that R. irregularis reduced the specific leaf weight and the distribution ratio of nitrogen in cell wall proteins in the leaves of T. jackii, whereas it enhanced the distribution ratio of nitrogen in cell membrane proteins and water-soluble proteins. R. irregularis enabled more nitrogen uptake for growth by decreasing the distribution of nitrogen to the structural substances. At low-nitrogen levels, inoculation with R. irregularis improved the plant height (18.78 ~ 36.04%), shoot dry weight (50.53 ~ 64.33%), total dry weight (42.86 ~ 52.82%), maximal net photosynthetic rate (Pmax) (16.83 ~ 20.11%), photosynthetic nitrogen use efficiency (PNUE) (40.01 ~ 43.14%), PC (33.56 ~ 38.59%) and PB (29.08 ~ 34.02%). However, it did not substantially affect the leaf nitrogen content per unit area or the leaf nitrogen content per unit mass. Moreover, Pmax exhibited a significant positive correlation with PC and PB, and all three parameters showed a significant positive correlation with the PNUE, thereby revealing that R. irregularis increased the photosynthetic capacity and PNUE of T. jackii through boosting PC and PB.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

AMF:

Arbuscular mycorrhizal fungi

LMA:

Leaf mass per area

P B :

Energy metabolism

P C :

Carboxylation system

P max :

Maximal net photosynthetic rate

PNUE:

Photosynthetic nitrogen use efficiency

References

  • Awika HO, Mishra AK, Gill H, DiPiazza J, Avila CA, Joshi V (2021) Selection of nitrogen responsive root architectural traits in spinach using machine learning and genetic correlations. Sci Rep 11:9536

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bao SD (2000) Soil agrochemical analysis. China Agricultural Publishing House

    Google Scholar 

  • Buzatti R, Pfeilsticker T, Muniz A, Ellis V, Souza R, Lemos-Filho J, Lovato M (2019) Disentangling the environmental factors that shape genetic and phenotypic leaf trait variation in the tree Qualea grandiflora across the Brazilian savanna. Front Plant Sci 10:1580

    Article  PubMed  PubMed Central  Google Scholar 

  • Cai MY, Wen YF, Uchiyama K, Onuma Y, Tsumura Y (2020) Population genetic diversity and structure of ancient tree populations of Cryptomeria japonica var. sinensis based on RAD-seq data. Forests 11:1192

    Article  Google Scholar 

  • Calabrese S, Kohler A, Niehl A, Veneault-Fourrey C, Boller T, Courty P (2017) Transcriptome analysis of the Populus trichocarpaRhizophagus irregularis mycorrhizal symbiosis: regulation of plant and fungal transportomes under nitrogen starvation. Plant Cell Physiol 58:1003–1017

    Article  CAS  PubMed  Google Scholar 

  • Castro-Rodriguez V, Assaf-Casals I, Perez-Tienda J, Fan XR, Avila C, Miller A, Canovas FM (2016) Deciphering the molecular basis of ammonium uptake and transport in maritime pine. Plant Cell Environ 39:1669–1682

    Article  CAS  PubMed  Google Scholar 

  • Chi KH, Nam HP, Cuong HL, Hang TNT, Ha TCD, Ha HC, Bram B, Huong ML (2019) Impact of nitrogen fertilizer on the mycorrhizal inoculating potential and fungal community structure in rhizosphere of medicinal plant Curcuma longa L. Geomicrobiol J 36:385–395

    Article  CAS  Google Scholar 

  • Chung YA, Miller TEX, Rudgers JA (2015) Fungal symbionts maintain a rare plant population but demographic advantage drives the dominance of a common host. J Ecol 103:967–977

    Article  Google Scholar 

  • Couturier J, Montanini B, Martin F, Brun A, Blaudez D, Chalot M (2007) The expanded family of ammonium transporters in the perennial poplar plant. New Phytol 174:137–150

    Article  CAS  PubMed  Google Scholar 

  • David AS, Quintana-Ascencio PF, Menges ES, Thapa-Magar KB, Afkhami ME, Searcy CA (2019) Soil microbiomes underlie population persistence of an endangered plant species. Am Nat 194:488–494

    Article  PubMed  Google Scholar 

  • Domingo SK, Alfonso E, Sonia M, Christine S (2021) Deciduous and evergreen oaks show contrasting adaptive responses in leaf mass per area across environments. New Phytol 230:521–534

    Article  CAS  Google Scholar 

  • Fabiańska I, Sosa-Lopez E, Bucher M (2019) The role of nutrient balance in shaping plant root-fungal interactions: facts and speculation. Curr Opin Microbiol 49:90–96

    Article  PubMed  CAS  Google Scholar 

  • Farquhar GD, von Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78–90

    Article  CAS  Google Scholar 

  • Gao C, Montoya L, Xu L, Madera M, Hollingsworth J, Purdom E, Hutmacher RB, Dahlberg JA, Coleman-Derr D, Lemaux PG, Taylor JW (2019) Strong succession in arbuscular mycorrhizal fungal communities. ISME J 13:214–226

    Article  PubMed  Google Scholar 

  • Gazzarrini S, Lejay L, Gojon A, Ninnemann O, Frommer WB, von Wiren N (1999) Three functional transporters for constitutive, diurnally regulated, and starvation-induced uptake of ammonium into Arabidopsis roots. Plant Cell 11:937–947

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hartman J, Wehner T, Ma G, Perkins-Veazie P (2019) Citrulline and arginine content of taxa of Cucurbitaceae. Horticulturae 5:22

    Article  Google Scholar 

  • Interanational Union for the Conservation of Nature (2010) IUCN Red List of Threatened Species. Version 2010.4. Available at http://www.iucnredlist.org. Accessed on Sept 2011

  • Jin ZX, Li JM (2007) Genetic differentiation in endangered Heptacodium miconioides Rehd. based on ISSR polymorphism and implications for its conservation. Forest Ecol Manag 245:130–136

    Article  Google Scholar 

  • Kalia VC, Gong C, Patel SKS, Lee JK (2021) Regulation of plant mineral nutrition by signal molecules. Microorganisms 9:774

    Article  PubMed  PubMed Central  Google Scholar 

  • McGonigle T, Miller M, Evans D, Fairchild G, Swan J (1990) A new method which gives an objective measure of colonization of roots by vesicular-arbuscular mycorrhizal fungi. New Phytol 115:495–501

    Article  CAS  PubMed  Google Scholar 

  • Mudasir D, Aashaq HS, Gowher W, Zafar AR (2020) Dynamics of mycorrhizal mutualism in relation to plant invasion along an altitudinal gradient in Kashmir Himalaya. Bot Rev 86:1–38

    Article  Google Scholar 

  • Mueller EA, Wisnoski NI, Peralta AL, Lennon JT (2020) Microbial rescue effects: How microbiomes can save hosts from extinction. Funct Ecol 34:2055–2064

    Article  Google Scholar 

  • Muhammad AS, Fahim N, Fiaz A (2019) Protective effect of potassium and chitosan supply on growth, physiological processes and antioxidative machinery in sunflower (Helianthus annuus L.) under drought stress. Ecotox Environ Safe 187:109841

    Google Scholar 

  • Niinemets U, Tenhunen JD (1997) A model separating leaf structural and physiological effects on carbon gain along light gradients for the shade-tolerant species Acer saccharum. Plant Cell Environ 20:845–866

    Article  Google Scholar 

  • Phillips J, Hayman D (1970) Improved procedures for clearing roots and staining parasitic and vesicular-arbuscular mycorrhizal fungi for rapid assessment of infection. Trans Br Mycol Soc 55:158–161

    Article  Google Scholar 

  • Piliarová M, Ondreičková K, Hudcovicová M, Mihálik D, Kraic J (2019) Arbuscular mycorrhizal fungi–Their life and function in ecosystem. Agriculture 65:3–15

    Google Scholar 

  • Ren H, Qin HN, Ouyang ZY, Wen XY, Jin XH, Liu H, Lu HF, Liu HX, Zhou J, Zeng Y, Smith P, Jackson PW, Gratzfeld J, Sharrock S, Xu HG, Zhang ZX, Guo QF, Sun WB, Ma JS, Hu YH, Zhang QM, Zhao LN (2019) Progress of implementation on the global strategy for plant conservation in (2011–2020) China. Biol Conserv 230:169–178

    Article  Google Scholar 

  • Rosolino I, Gaetano A, Moisés ASH, Alfonso SF, Matthias CR, Dario G (2020) Nitrogen type and availability drive mycorrhizal effects on wheat performance, nitrogen uptake and recovery, and production sustainability. Front Plant Sci 11:760

    Article  Google Scholar 

  • Rutkowska J, Lagisz M, Bonduriansky R, Nakagawa S (2020) Mapping the past, present and future research landscape of paternal effects. BMC Biol 27:183

    Article  Google Scholar 

  • Santos Y, Martínez-Orea Y, Álvarez-Sánchez F, Noé M, Sara C-R, Argüero S, Castillo S (2021) Interaction of Acaena elongata L. with arbuscular mycorrhizal fungi under phosphorus limitation conditions in a temperate forest. Phyton 90:605–619

    Article  Google Scholar 

  • Smith SE, Read D (2008) Mycorrhizal symbiosis. Academic Press

    Google Scholar 

  • Smith SE, Smith FA (2011) Roles of arbuscular mycorrhizas in plant nutrition and growth: new paradigms from cellular to ecosystem scales. Annu Rev Plant Biol 62:227–250

    Article  CAS  Google Scholar 

  • Sonoda Y, Ikeda A, Saiki S, von Wiren N, Yamaya T, Yamaguchi J (2003) Distinct expression and function of three ammonium transporter genes (OsAMT1;1–1;3) in rice. Plant Cell Physiol 44:726–734

    Article  CAS  PubMed  Google Scholar 

  • State Council of the people’s Republic of China (1999) List of national key protected wild plants (the first batch). Plant J 5:4–111

    Google Scholar 

  • Surendirakumar K, Pandey RR, Muthukumar T (2021) Arbuscular mycorrhizal fungi in roots and rhizosphere of black rice in terrace fields of North-East India. Proc Natl Acad Sci India Sect b Biol Sci 91:277–287

    Article  CAS  Google Scholar 

  • Takashima T, Hikosaka K, Hirose T (2004) Photosynthesis or persistence: nitrogen allocation in leaves of evergreen and deciduous Quercus species. Plant Cell Environ 27:1047–1054

    Article  CAS  Google Scholar 

  • Tegeder M, Masclaux-Daubresse C (2018) Source and sink mechanisms of nitrogen transport and use. New Phytol 217:35–53

    Article  PubMed  Google Scholar 

  • Wang MQ, Jin GZ, Liu ZL (2019a) Variation and relationships between twig and leaf traits of species across successional status in temperate forests. Scand J Forest Res 34:1–9

    Article  CAS  Google Scholar 

  • Wang YJ, Xiao K, Kou YX (2019b) Torreya jackii (Taxaceae): a special species that is genetically admixed, morphologically distinct, and geographically sympatric with parent species. Forests 10:174–174

    Article  CAS  Google Scholar 

  • Wilschut RA, van der Putten WH, Garbeva P, Harkes P, Konings W, Kulkarni P, Martens H, Geisen S (2019) Root traits and belowground herbivores relate to plant-soil feedback variation among congeners. Nat Commun 10:1564

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu F, Zhang H, Fang F, Wu N, Zhang Y, Tang M (2017) Effects of nitrogen and exogenous Rhizophagus irregularis on the nutrient status, photosynthesis and leaf anatomy of Populus × canadensis-‘Neva.’ J Plant Growth Regul 36:824–835

    Article  CAS  Google Scholar 

  • Zhou MX, Yan GY, Xing YJ, Chen F, Zhang X (2019) Nitrogen deposition and decreased precipitation does not change total nitrogen uptake in a temperate forest. Sci Total Environ 651:32–41

    Article  CAS  PubMed  Google Scholar 

  • Zhou GC, Wang JY, Li W, Zhang M, Meng GQ, Wang HY, Chen X, Wu YH, Wu P, Wang YL (2020) Complete chloroplast genome sequence of Chimonanthus praecox link (Calycanthaceae): an endemic plant species in China. Mitochondrial DNA B 5:3469–3471

    Article  Google Scholar 

Download references

Acknowledgements

The authors of this study express their gratitude to National Natural Science Foundation of China, Zhejiang Province Public Welfare Technology Application Research Project, Natural Science Foundation of Zhejiang Province, Zhejiang Shuren University Basic Scientific Research Special Funds.

Funding

The authors of this study express their gratitude to National Natural Science Foundation of China (31600257, 31800187), Zhejiang Province Public Welfare Technology Application Research Project (2016C32022), Natural Science Foundation of Zhejiang Province (LY18C030003), Zhejiang Shuren University Basic Scientific Research Special Funds (2020XZ010), for financial supports of this study.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yin Lu.

Ethics declarations

Conflict of interest

The authors declare that they have no competing interests.

Additional information

Communicated by Dorothea Bartels.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Lu, Y., Ma, Q., Chen, C. et al. Effects of arbuscular mycorrhizal fungi on the nitrogen distribution in endangered Torreya jackii under nitrogen limitation. Planta 254, 53 (2021). https://doi.org/10.1007/s00425-021-03704-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00425-021-03704-2

Keywords

Navigation