Skip to main content
Log in

Maturation of Atriplex halimus L. leaves involves changes in the molecular regulation of stomatal conductance under high evaporative demand and high but not low soil water content

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Under high water availability, the maximum gas exchange was observed at noon in the expanding and expanded leaves. The expanded leaves showed lower gas exchange capacity due to the regulation of stomatal-movement genes.

Under well-watered condition, stomatal conductance (gs) and photosynthetic rate (A) of expanding and expanded leaves of Atriplex halimus peaked at noon despite the midday decline in the leaf relative water content, suggesting deviation from typical isohydric behaviour. However, the expanding leaves had higher gs and A than the expanded ones. When light intensity was temporarily increased, A and gs were enhanced in both types of leaves though to a higher level in the expanding leaves. In well-watered expanded leaves: (1) A was mainly dependent on gs rather than photosynthetic capacity; gs was controlled by internal factors, thereby limiting water loss via transpiration (E); (2) the accumulation of total soluble sugars (TSS) along with increased Rubisco protein could be a subsidiary factor limiting A; (3) TSS and ABA seem to act in co-ordination to up-regulate ABA-dependent genes controlling gs and (4) the significant induction of DREBs suggests a role in maintaining high relative water content in these leaves compared to the expanding ones. In expanding leaves of well-watered plants, high A along with Rubisco down-regulation and elevated TSS suggests that A was regulated by signals coordinating carbon and nitrogen balance and the elevated ABA could be involved in regulating the hydraulic activity to enhance cell expansion and facilitate leaf growth. Both expanded and expanding leaves behaved in typical isohydric manner under water stress, which did not involve the accumulation of ABA suggesting that stomatal closure was primarily stimulated by hydraulic rather than chemical signals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

A :

Photosynthetic rate

ABI3(5) :

Abscisic acid insensitive 3(5)

ABF :

Abscisic acid binding factor

C i :

Leaf internal CO2 concentration

DREB1(2) :

Dehydration responsive element binding 1(2)

E :

Transpiration

g s :

Stomatal conductance

NCED :

9-cis Epoxycarotenoid dioxygenase

RWC:

Relative water content

Ψ leaf :

Leaf water potential

VPD:

Vapour pressure deficit

WUE:

Water use efficiency

References

  • Abbad A, Benchaabane A (2004) The phonological study of Atriplex halimus L. Afr J Ecol 42:69–73

    Article  Google Scholar 

  • Adams P, Nelson DE, Yamada S, Chmara W, Jensen RG, Bohnert HJ, Griffiths H (1998) Growth and development of Mesembryanthemum crystallinum (Aizoaceae). New Phytol 138:171–190

    Article  CAS  PubMed  Google Scholar 

  • Arnon DI (1949) Copper enzymes in isolated chloroplasts: polyphenol oxidase in Beta vitlgaris. Plant Physiol 24:1–15

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arroyo A, Bossi F, Finkelstein RR, León P (2003) Three genes that affect sugar sensing (abscisic acid insensitive 4, abscisic acid insensitive 5, and constitutive triple response 1) are differentially regulated by glucose in Arabidopsis. Plant Physiol 133:231–242

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Atkinson CJ, Davies WJ, Mansfield TA (1989) Changes in stomatal conductance in intact ageing wheat leaves in response to abscisic acid. J Exp Bot 40:1021–1028

    Article  CAS  Google Scholar 

  • Ben Hassine A, Lutts S (2010) Differential responses of saltbush Atriplex halimus L. exposed to salinity and water stress in relation to senescing hormones abscisic acid and ethylene. J Plant Physiol 167:1448–1456

    Article  CAS  Google Scholar 

  • Bjorkman O (1971) Comparative photosynthetic CO2 exchange in higher plants. In: Hatch MD, Slatyer RO, Osmond CB (eds) Photosynthesis and photorespiration. Wiley, New York, pp 18–32

    Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  CAS  PubMed  Google Scholar 

  • Bucci SJ, Goldstein G, Meinzer FC, Franco AC, Campanello P, Scholz FG (2005) Mechanisms contributing to seasonal homeostasis of minimum leaf water potential and predawn disequilibrium between soil and plant water potential in neotropical savanna trees. Trees Struct Funct 19:296–304

    Article  Google Scholar 

  • Campany CE, Tjoelker N, von Caemmerer S, Duursma RA (2016) Coupled response of stomatal and mesophyll conductance to light enhances photosynthesis of shade leaves under sunflecks. Plant Cell Environ 39:2762–2773

    Article  CAS  PubMed  Google Scholar 

  • Chater CCC, Oliver J, Casson S, Gray JE (2014) Putting the brakes on: abscisic acid as a central environmental regulator of stomatal development. New Phytol 202:376–391

    Article  CAS  PubMed  Google Scholar 

  • Chaves MM, Zarrouk O, Francisco R, Costa JM, Santos T, Regalado AP, Rodrigues ML, Lopes CM (2010) Grapevine under deficit irrigation: hints from physiological and molecular data. Ann Bot 105:661–676

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen H, Zhang J, Neff MM, Hong SW, Zhang H, Deng X, Xiong L (2008) Integration of light and abscisic acid signalling during seed germination and early seedling development. Proc Natl Acad Sci USA 105:4495–4500

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Choi H, Hong J, Ha J, Kang J, Kim SY (2000) ABFs, a family of ABA-responsive element binding factors. J Biol Chem 275:1723–1730

    Article  CAS  PubMed  Google Scholar 

  • Coruzzi G, Broglie R, Edwards C, Chua NH (1984) Tissue-specific and light-regulated expression of a pea nuclear gene encoding the small subunit of ribulose-1,5 bisphosphate carboxylase. EMBO J 3:1671–1679

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Danin A (1996) Plants of desert dunes. Springer, Berlin

    Book  Google Scholar 

  • Farquhar GD, Sharkey TD (1982) Stomatal conductance and photosynthesis. Annu Rev Plant Physiol 33:317–345

    Article  CAS  Google Scholar 

  • Farquhar GD, von Caemmerer S, Berry JA (1980) A biochemical model of photosynthetic CO2 assimilation in leaves of C3 species. Planta 149:78–90

    Article  CAS  PubMed  Google Scholar 

  • Finkelstein RR, Gampala SS, Rock CD (2002) Abscisic acid signalling in seeds and seedlings. Plant Cell 14:S15–S45

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Franks PJ, Drake PL, Froend RH (2007) Anisohydric but isohydrodynamic: seasonally constant plant water potential gradient explained by a stomatal control mechanism incorporating variable plant hydraulic conductance. Plant Cell Environ 30:19–30

    Article  PubMed  Google Scholar 

  • Frey A, Effroy D, Lefebvre V, Seo M, Perreau F, Berger A, Sechet J, To A, North HM, Marion-Poll A (2012) Epoxycarotenoid cleavage by NCED5 fine-tunes ABA accumulation and affects seed dormancy and drought tolerance with other NCED family members. Plant J 70:501–512

    Article  CAS  PubMed  Google Scholar 

  • Gholami M, Rahemi Gholami SRM, Rahemi M, Rastegar S (2012) Use of rapid screening methods for detecting drought tolerant cultivars of fig (Ficus carica L.). Sci Hortic 143:7–14

    Article  Google Scholar 

  • Giannarelli S, Muscatello B, Bogani P, Spiriti MM, Buiatti M, Fuoco R (2010) Comparative determination of some phytohormones in wild-type and genetically modified plants by gas chromatography–mass spectrometry and high-performance liquid chromatography–tandem mass spectrometry. Anal Biochem 398:60–68

    Article  CAS  PubMed  Google Scholar 

  • Glenn EP, Brown JJ, Blumwald E (1999) Salt tolerance and crop potential oh halophytes. Cri Rev Plant Sci 18:227–255

    Article  Google Scholar 

  • Hazrati S, Tahmasebi-Sarvestani Z, Modarres-Sanavy SAM, Mokhtassi-Bidgoli A, Nicola S (2016) Effects of water stress and light intensity on chlorophyll fluorescence parameters and pigments of Aloe vera L. Plant Physiol Biochem 106:141–148

    Article  CAS  PubMed  Google Scholar 

  • Hedrich R, Neimanis S, Savchenko G, Felle HH, Kaiser WM, Heber U (2001) Changes in apoplastic pH and membrane potential in leaves in relation to stomatal responses to CO2, malate, abscisic acid or interruption of water supply. Planta 213:594–601

    Article  CAS  PubMed  Google Scholar 

  • Hochberg U, Degu A, Fait A, Rachmilevitch S (2013) Near isohydric grapevine cultivar displays higher photosynthetic efficiency and photorespiration rates under drought stress as compared with near anisohydric grapevine cultivar. Physiol Plant 147:443–452

    Article  CAS  PubMed  Google Scholar 

  • Hossain MA, Lee Y, Cho JI, Ahn CH, Lee SK, Jeon JS et al (2010) The bZIP transcription factor OsABF1 is an ABA responsive element binding factor that enhances abiotic stress signaling in rice. Plant Mol Biol 72:557–560

    Article  CAS  Google Scholar 

  • Jonasson S, Chapin FS III (1985) Significance of sequential leaf development for nutrient balance of the cotton sedge, Eriophorum vaginatum L. Oecologia 67:511–518

    Article  PubMed  Google Scholar 

  • Kizis D, Lumbreras V, Pagès M (2001) Role of AP2/EREBP transcription factors in gene regulation during abiotic stress. FEBS Lett 498:187–189

    Article  CAS  PubMed  Google Scholar 

  • Kromdijk J, Schepers HE, Albanito F, Fitton N, Carroll F, Jones MB, Finnan J, Lanigan GJ, Griffiths H (2008) Bundle sheath leakiness and light limitation during C4 leaf and canopy CO2 uptake. Plant Physiol 148:2144–2155

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Laemmli EK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  CAS  PubMed  Google Scholar 

  • Li Q, Deng M, Xiong Y, Coombes A, Zhao W (2014) Morphological and photosynthetic response to high and low irradiance of Aeschynanthus longicaulis. Sci World J 2014:347461. https://doi.org/10.1155/2014/347461

    Article  CAS  Google Scholar 

  • Mahajan S, Tuteja N (2005) Cold, salinity and drought stresses: an overview. Arch Biochem Biophys 444:139–158

    Article  CAS  PubMed  Google Scholar 

  • Makino A (2003) Rubisco and nitrogen relationships in rice. Leaf photosynthesis and plant growth. Soil Sci Plant Nutr 49:319–327

    Article  CAS  Google Scholar 

  • Martınez JP, Kinet JM, Bajji M, Lutts S (2005) NaCl alleviates polyethylene glycol-induced water stress in the halophyte species Atriplex halimus L. J Exp Bot 56:2421–2431

    Article  CAS  PubMed  Google Scholar 

  • McArthur ED, Sanderson SC (1984) Distribution, systematics, and evolution of Chenopodiaceae: an overview. In: Tiedemann AR, McArthur ED, Stutz HC, Stevens R, Johnson KL (eds) Proceedings of symposium on the biology of Atriplex and related chenopods, 1983, May 4–6; Provo, UT. Gen Tech Rep INT-172, inter for range exp stat. USDA Forest Service, Ogden, pp 14–23

    Google Scholar 

  • Mehrotra R, Bhalothia P, Bansal P, Basantanid MK, Bhartie V, Mehrotra S (2014) Abscisic acid and abiotic stress tolerance—different tiers of regulation. J Plant Physiol 171:486–496

    Article  CAS  PubMed  Google Scholar 

  • Mittler R, Merquiol E, Hallak-Herr E, Rachmilevitch S, Kaplan A, Cohen M (2001) Living under a `dormant’ canopy: a molecular acclimation mechanism of the desert plant Retama raetam. Plant J 25:407–416

    Article  CAS  PubMed  Google Scholar 

  • Monson RK, Szarek SR (1979) Ecophysiological studies of Sonoran desert plants V. Photosynthetic adaptations of Machaeranthera gracilis, a winter annual. Oecologia 41:317–327

    Article  CAS  PubMed  Google Scholar 

  • Nada RM, Abogadallah GM (2014) Aquaporins are major determinants of water use efficiency of rice plants in the field. Plant Sci 227:165–180

    Article  CAS  PubMed  Google Scholar 

  • Pantin F, Simonneau T, Muller B (2012) Coming of leaf age: control of growth by hydraulics and metabolics during leaf ontogeny. New Phytol 196:349–366

    Article  PubMed  Google Scholar 

  • Pantin F, Renaud J, Barbier F, Vavasseur A, Le TD, Rose C, Bariac T, Casson S, McLachlan D, Hetherington AM et al (2013) Developmental priming of stomatal sensitivity to abscisic acid by leaf microclimate. Curr Biol 23:1805–1811

    Article  CAS  PubMed  Google Scholar 

  • Parcy F, Giraudat J (1997) Interactions between the ABI1 and the ectopically expressed ABI3 genes in controlling abscisic acid responses in Arabidopsis vegetative tissues. Plant J 11:693–702

    Article  CAS  PubMed  Google Scholar 

  • Paul MJ, Foyer CH (2001) Sink regulation of photosynthesis. J Exp Bot 52:1383–1400

    Article  CAS  PubMed  Google Scholar 

  • Pearcy RW (1977) Acclimation of photosynthetic and respiratory carbon dioxide exchange to growth temperature in Atriplex lentiformis (Torr.) Wats. Plant Physiol 59:795–799

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pearcy RW, Harrison AT (1977) Effects of growth temperature on the thermal stability of the photosynthetic apparatus of Atriplex lentiformis (Torr.) Wats. Plant Physiol 59:873–878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pego JV, Kortstee AJ, Huijser C, Smeekens SCM (2000) Photosynthesis, sugars and the regulation of gene expression. J Exp Bot 51:407–416

    Article  CAS  PubMed  Google Scholar 

  • Pinheiro C, Chaves MM (2011) Photosynthesis and drought: can we make metabolic connections from available data? J Exp Bot 62:869–882

    Article  CAS  PubMed  Google Scholar 

  • Raven PH, Evert RF, Eichhorn SE (1992) Biology of plants. Freeman/Worth Publishers, New York

    Google Scholar 

  • Regnard JL, Segura V, Merveille N, Durel CE, Costes E (2009) QTL analysis for leaf gas exchange in an apple progeny grown under atmospheric constraints. Acta Hortic 814:369–374. https://doi.org/10.17660/ActaHartic.2009.814.60

    Article  CAS  Google Scholar 

  • Reis RR, Brito da Cunha BAD, Martins PK, Martins MTB, Alekcevetch JC, Chalfun-Júnior A, Andrade AC, Ribeiroa AB, Qind F, Mizoie J, Yamaguchi-Shinozakie K, Nakashima K, Carvalho JFC, Ferreira de Sousa CA, Nepomuceno AL, Kobayashi AK, Molinaria HBC (2014) Induced over-expression of AtDREB2A CA improves drought tolerance in sugarcane. Plant Sci 221(222):59–68

    Article  CAS  PubMed  Google Scholar 

  • Sade N, Gebremedhin A, Moshelion M (2012) Risk-taking plants: anisohydric behaviour as a stress-resistance trait. Plant Signal Behav 7:767–770

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sage RF (2002) Variation in the kcat of Rubisco in C3 and C4 plants and some implications for photosynthetic performance at high and low temperature. J Exp Bot 53:609–620

    Article  CAS  PubMed  Google Scholar 

  • Sage RF, Pearcy RW (2000) The physiological ecology of C4 photosynthesis. In: Leegood RC, Sharkey TD, von Caemmerer S (eds) Photosynthesis: physiology and metabolism. Kluwer Academic Publishers, Dordrecht, pp 497–532

    Chapter  Google Scholar 

  • Sage RF, Pearcy RW, Seemann JR (1987) The nitrogen use efficiency of C3 and C4 plants: III. Leaf nitrogen effects on the activity of carboxylating enzymes in Chenopodium album (L.) and Amaranthus retroflexus (L.). Plant Physiol 85:355–359

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Saibo NJM, Lourencxo T, Oliveira MM (2009) Transcription factors and regulation of photosynthetic and related metabolism under environmental stresses. Ann Bot 103:609–623

    Article  CAS  PubMed  Google Scholar 

  • Schultz HR (2003) Differences in hydraulic architecture account for near-isohydric and anisohydric behaviour of two field-grown Vitis vinifera L. cultivars during drought. Plant Cell Environ 26:1393–1405

    Article  Google Scholar 

  • Spollen WG, LeNoble ME, Samuels AD, Bernstein N, Sharp RE (2000) Abscisic acid accumulation maintains maize primary root elongation at low water potentials by restricting ethylene production. Plant Physiol 122:967–976

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tan BC, Joseph LM, Deng WT, Liu L, Li QB, Cline K, McCarty DR (2003) Molecular characterization of the Arabidopsis 9-cis epoxycarotenoid dioxygenase gene family. Plant J 35:44–56

    Article  CAS  PubMed  Google Scholar 

  • Tardieu F, Simonneau T (1998) Variability among species of stomatal control under fluctuating soil water status and evaporative demand: modelling isohydric and anisohydric behaviours. J Exp Bot 49:419–432

    Article  Google Scholar 

  • Tombesi S, Nardini A, Frioni T, Soccolini M, Zadra C, Farinelli D, Poni S, Palliotti A (2015) Stomatal closure is induced by hydraulic signals and maintained by ABA in drought-stressed grapevine. Nat Sci Rep 5:12449. https://doi.org/10.1038/srep12449

    Article  Google Scholar 

  • Wasilewska A, Vlad F, Sirichandra C, Redko Y, Jammes F, Valon C, Freidit FN, Leung J (2008) An update on abscisic acid signaling in plants and more. Mol Plant 1:198–217

    Article  CAS  PubMed  Google Scholar 

  • Webber AN, Nie GY, Long SP (1994) Acclimation of photosynthetic proteins to rising atmospheric CO2. Photosynth Res 39:413–425

    Article  CAS  PubMed  Google Scholar 

  • Wilkinson S, Davies WJ (2002) ABA-based chemical signalling: the co-ordination of response to stress in plants. Plant Cell Environ 25:195–210

    Article  CAS  PubMed  Google Scholar 

  • Zeevaart JAD, Boyer GL (1984) Accumulation and transport of abscisic acid and its metabolites in Ricinus and Xanthium. Plant Physiol 74:934–939

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Davies WJ (1989) Sequential response of whole plant water relations to prolonged soil drying and the involvement of xylem sap ABA in the regulation of stomatal behaviour of sunflower plants. New Phytol 113:167–174

    Article  CAS  Google Scholar 

  • Zhang J, Zhang X (1994) Can early wilting of old leaves account for much of the ABA accumulation in flooded pea plants? J Exp Bot 45:1335–1342

    Article  CAS  Google Scholar 

  • Zhang HT, Nguyen HT, Blum A (1999) Genetic analysis of osmotic adjustment in crop plants. J Exp Bot 50:291–302

    Article  CAS  Google Scholar 

  • Zhang P, Yang P, Zhang Z, Han B, Wang W, Wang Y, Cao Y, Hu T (2014) Isolation and characterization of a buffalo grass (Buchloe dactyloides) dehydration responsive element binding transcription factor, BdDREB2. Gene 536:123–128

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors would like to thank Laboratory of Functional Genomics, Department of Botany and Microbiology, Faculty of Science, Damietta University, for hosting this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Reham M. Nada.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 4050 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Nada, R.M., Khedr, A.H.A., Serag, M.S. et al. Maturation of Atriplex halimus L. leaves involves changes in the molecular regulation of stomatal conductance under high evaporative demand and high but not low soil water content. Planta 248, 795–812 (2018). https://doi.org/10.1007/s00425-018-2938-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-018-2938-2

Keywords

Navigation