Skip to main content
Log in

Phytoglobins regulate nitric oxide-dependent abscisic acid synthesis and ethylene-induced program cell death in developing maize somatic embryos

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

During maize somatic embryogenesis, suppression of phytoglobins (Pgbs) reduced ABA levels leading to ethylene-induced programmed cell death in the developing embryos. These effects modulate embryonic yield depending on the cellular localization of specific phytoglobin gene expression.

Suppression of Zea mays phytoglobins (ZmPgb1.1 or ZmPgb1.2) during somatic embryogenesis induces programmed cell death (PCD) by elevating nitric oxide (NO). While ZmPgb1.1 is expressed in many embryonic domains and its suppression results in embryo abortion, ZmPgb1.2 is expressed in the basal cells anchoring the embryos to the embryogenic tissue. Down-regulation of ZmPgb1.2 is required to induce PCD in these anchor cells allowing the embryos to develop further. Exogenous applications of ABA could reverse the effects caused by the suppression of either of the two ZmPgbs. A depletion of ABA, ascribed to a down-regulation of biosynthetic genes, was observed in those embryonic domains where the respective ZmPgbs were repressed. These effects were mediated by NO. Depletion in ABA content increased the transcription of genes participating in the synthesis and response of ethylene, as well as the accumulation of ethylene, which influenced embryogenesis. Somatic embryo number was reduced by high ethylene levels and increased with pharmacological treatments suppressing ethylene synthesis. The ethylene inhibition of embryogenesis was linked to the production of reactive oxygen species (ROS) and the execution of PCD. Integration of ABA and ethylene in the ZmPgb regulation of embryogenesis is proposed in a model where NO accumulates in ZmPgb-suppressing cells, decreasing the level of ABA. Abscisic acid inhibits ethylene biosynthesis and the NO-mediated depletion of ABA relieves this inhibition causing ethylene to accumulate. Elevated ethylene levels trigger production of ROS and induce PCD. Ethylene-induced PCD in the ZmPgb1.1-suppressing line [ZmPgb1.1 (A)] leads to embryo abortion, while PCD in the ZmPgb1.2-suppressing line [ZmPgb1.2 (A)] results in the elimination of the anchor cells and the successful development of the embryos.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Abbreviations

NO:

Nitric oxide

PCD:

Programmed cell death

Pgbs:

Phytoglobins

ROS:

Reactive oxygen species

References

  • Albertos P, Romero-Puertas MC, Tatematsu K, Mateos I, Sánchez-Vicente I, Nambara E, Lorenzo O (2015) S-Nitrosylation triggers ABI5 degradation to promote seed germination and seedling growth. Nat Commun 6:8669

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bai X, Long J, He X, Yan J, Chen X, Tan Y, Li K, Chen L, Xu H (2016) Overexpression of spinach non-symbiotic hemoglobin in Arabidopsis resulted in decreased NO content and lowered nitrate and other abiotic stresses tolerance. Sci Rep 6:26400

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Baron KN, Schroeder DF, Stasolla C (2012) Transcriptional response of abscisic acid (ABA) metabolism and transport to cold and heat stress applied at the reproductive stage of development in Arabidopsis thaliana. Plant Sci 188:48–59

    Article  PubMed  Google Scholar 

  • Bindschedler LV, Dewdney J, Blee KA, Stone JM, Asai T, Plotnikov J, Denoux C, Hayes T, Gerrish C, Davies DR, Ausubel FM (2006) Peroxidase-dependent apoplastic oxidative burst in Arabidopsis required for pathogen resistance. Plant J 47:851–863

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cantón FR, Suárez MF, Josè-Estanyol M, Cánovas FM (1999) Expression analysis of a cytosolic glutamine synthetase gene in cotyledons of Scots pine seedlings: developmental, light regulation and spatial distribution of specific transcripts. Plant Mol Biol 40:623–634

    Article  PubMed  Google Scholar 

  • Davies DR, Bindschedler LV, Strickland TS, Bolwell GP (2006) Production of reactive oxygen species in Arabidopsis thaliana cell suspension cultures in response to an elicitor from Fusarium oxysporum: implications for basal resistance. J Exp Bot 57:1817–1827

    Article  CAS  PubMed  Google Scholar 

  • Dordas C (2009) Nonsymbiotic hemoglobins and stress tolerance in plants. Plant Sci 176:433–440

    Article  CAS  PubMed  Google Scholar 

  • Dordas C, Hasinoff BB, Igamberdiev AU, Manac’h N, Rivoal J, Hill RD (2003) Expression of a stress-induced hemoglobin affects NO levels produced by alfalfa root cultures under hypoxic stress. Plant J 35:763–770

    Article  CAS  PubMed  Google Scholar 

  • Drummond GR, Selemidis S, Griendling KK, Sobey CG (2011) Combating oxidative stress in vascular disease: NADPH oxidases as therapeutic targets. Nat Rev Drug Discov 10:453–471

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elhiti M, Tahir M, Gulden RH, Khamiss K, Stasolla C (2010) Modulation of embryo-forming capacity in culture through the expression of Brassica genes involved in the regulation of the shoot apical meristem. J Exp Bot 61:4069–4085

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Elhiti M, Hebelstrup KH, Wang A, Li C, Cui Y, Hill RD, Stasolla C (2013) Function of type-2 Arabidopsis hemoglobin in the auxin-mediated formation of embryogenic cells during morphogenesis. Plant J 74:946–958

    Article  CAS  PubMed  Google Scholar 

  • Endo A, Sawada Y, Takahashi H, Okamoto M, Ikegami K, Koiwai H, Seo M, Toyomasu T, Mitsuhashi W, Shinozaki K, Nakazono M (2008) Drought induction of Arabidopsis 9-cis-epoxycarotenoid dioxygenase occurs in vascular parenchyma cells. Plant Physiol 147:1984–1993

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ernst L, Goodger JQ, Alvarez S, Marsh EL, Berla B, Lockhart E, Jung J, Li P, Bohnert HJ, Schachtman DP (2010) Sulphate as a xylem-borne chemical signal precedes the expression of ABA biosynthetic genes in maize roots. J Exp Bot 61:3395

    Article  CAS  PubMed  Google Scholar 

  • Garrocho-Villegas V, De Jesús-Olivera MT, Quintanar ES (2012) Maize somatic embryogenesis: recent features to improve plant regeneration. Methods Mol Biol 877:173–182

    Article  CAS  PubMed  Google Scholar 

  • Geisler-Lee J, Caldwell C, Gallie DR (2010) Expression of the ethylene biosynthetic machinery in maize roots is regulated in response to hypoxia. J Exp Bot 61:857–871

    Article  CAS  PubMed  Google Scholar 

  • Gibbs DJ, Md Isa N, Movahedi M, Lozano-Juste J, Mendiondo GM, Berckhan S, Marín-de la Rosa N, Vicente Conde J, Sousa Correia C, Pearce SP, Bassel GW, Hamali B, Talloji P, Tomé DF, Coego A, Beynon J, Alabadí D, Bachmair A, León J, Gray JE, Theodoulou FL, Holdsworth MJ (2014) Nitric oxide sensing in plants is mediated by proteolytic control of group VII ERF transcription factors. Mol Cell 53:369–379

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hancock JT, Neill SJ, Wilson ID (2011) Nitric oxide and ABA in the control of plant function. Plant Sci 181:555–559

    Article  CAS  PubMed  Google Scholar 

  • Hauser BA, Sun K, Oppenheimer DG, Sage TL (2006) Changes in mitochondrial membrane potential and accumulation of reactive oxygen species precede ultrastructural changes during ovule abortion. Planta 223:492

    Article  CAS  PubMed  Google Scholar 

  • Hebelstrup KH, Jensen EØ (2008) Expression of NO scavenging hemoglobin is involved in the timing of bolting in Arabidopsis thaliana. Planta 227:917–927

    Article  CAS  PubMed  Google Scholar 

  • Hebelstrup KH, Hunt P, Dennis E, Jensen SB, Jensen EØ (2006) Hemoglobin is essential for normal growth of Arabidopsis organs. Physiol Plant 127:157–166

    Article  CAS  Google Scholar 

  • Hebelstrup KH, Østergaard-Jensen E, Hill RD (2008) Bioimaging techniques for subcellular localization of plant hemoglobins and measurement of hemoglobin-dependent nitric oxide scavenging in planta. Methods Enzymol 437:595–604

    Article  CAS  PubMed  Google Scholar 

  • Hebelstrup KH, van Zanten M, Mandon J, Voesenek LA, Harren FJ, Cristescu SM, Møller IM, Mur LA (2012) Hemoglobin modulates NO emission and hyponasty under hypoxia-related stress in Arabidopsis thaliana. J Exp Bot 63:5581–5591

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hill RD (1998) What are hemoglobins doing in plants? Can Soc Plant Biol 76:707–712

    CAS  Google Scholar 

  • Hill RD (2012) Non-symbiotic haemoglobins-what’s happening beyond nitric oxide scavenging? AoB Plants. https://doi.org/10.1093/aobpla/pls004

    PubMed  PubMed Central  Google Scholar 

  • Hill RD, Huang S, Stasolla C (2013) Hemoglobins, programmed cell death and somatic embryogenesis. Plant Sci 211:35–41

    Article  CAS  PubMed  Google Scholar 

  • Hill RD, Hargrove M, Arredondo-Peter R (2016) Phytoglobin: a novel nomenclature for plant globins accepted by the globin community at the 2014 XVIII conference on oxygen-binding and sensing proteins. F1000Res 5:212

    Article  PubMed  PubMed Central  Google Scholar 

  • Hoy JA, Hargrove MS (2008) The structure and function of plant hemoglobins. Plant Physiol Biochem 46:371–379

    Article  CAS  PubMed  Google Scholar 

  • Huang S, Hill RD, Wally OS, Dionisio G, Ayele BT, Jami SK, Stasolla C (2014) Hemoglobin control of cell survival/death decision regulates in vitro plant embryogenesis. Plant Physiol 165:810–825

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hunt PW, Watts RA, Trevaskis B, Llewelyn DJ, Burnell J, Dennis ES, Peacock WJ (2001) Expression and evolution of functionally distinct haemoglobin genes in plants. Plant Mol Biol 47:677–692

    Article  CAS  PubMed  Google Scholar 

  • Hunt PW, Klok EJ, Trevaskis B, Watts RA, Ellis MH, Peacock WJ, Dennis ES (2002) Increased level of hemoglobin 1 enhances survival of hypoxic stress and promotes early growth in Arabidopsis thaliana. Proc Natl Acad Sci USA 99:17197–17202

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kong L, Yeung EC (1994) Effects of ethylene and ethylene inhibitors on white spruce somatic embryo maturation. Plant Sci 104:71–80

    Article  CAS  Google Scholar 

  • León J, Castillo MC, Coego A, Lozano-Juste J, Mir R (2014) Diverse functional interactions between nitric oxide and abscisic acid in plant development and responses to stress. J Exp Bot 65:907–921

    Article  PubMed  Google Scholar 

  • Leroux B, Carmoy N, Giraudet D, Potin P, Larher F, Bodin M (2009) Inhibition of ethylene biosynthesis enhances embryogenesis of cultured microspores of Brassica napus. Plant Biotech Rep 3:347–350

    Article  Google Scholar 

  • Lin F, Ding H, Wang J, Zhang H, Zhang A, Zhang Y, Tan M, Dong W, Jiang M (2009) Positive feedback regulation of maize NADPH oxidase by mitogen activated protein kinase cascade in abscisic acid signalling. J Exp Bot 60:3221–3238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindermayr C, Saalbach G, Bahnweg G, Durner J (2006) Differential inhibition of Arabidopsis methionine adenosyltransferases by protein S-nitrosylation. J Biol Chem 281:4285–4291

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Shi L, Ye N, Liu R, Jia W, Zhang J (2009) Nitric oxide-induced rapid decrease of abscisic acid concentration is required in breaking seed dormancy in Arabidopsis. New Phytol 183:1030–1042

    Article  CAS  PubMed  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Luo X, Chen Z, Gao J, Gong Z (2014) Abscisic acid inhibits root growth in Arabidopsis through ethylene biosynthesis. Plant J 79:44–55

    Article  CAS  PubMed  Google Scholar 

  • Manac’h-Little N, Igamberdiev AU, Hill RD (2005) Hemoglobin expression affects ethylene production in maize cell cultures. Plant Physiol Biochem 43:485–489

    Article  PubMed  Google Scholar 

  • Mira MM, Hill RD, Stasolla C (2016a) Phytoglobins improve hypoxic root growth by alleviating apical meristem cell death. Plant Physiol 172:2044–2056

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mira MM, Wally OS, Elhiti M, El-Shanshory A, Reddy DS, Hill RD, Stasolla C (2016b) Jasmonic acid is a downstream component in the modulation of somatic embryogenesis by Arabidopsis Class 2 phytoglobin. J Exp Bot 67:2231–2246

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mur LA, Sivakumaran A, Mandon J, Cristescu SM, Harren FJ, Hebelstrup KH (2012) Hemoglobin modulates salicylate and jasmonate/ethylene-mediated resistance mechanisms against pathogens. J Exp Bot 63:4375–4387

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mur LA, Prats E, Hall MA, Hebelstrup KH (2013) Integrating nitric oxide into salicylic acid and jasmonic acid/ethylene plant defense pathways. Front Plant Sci 4:215–216

    PubMed  PubMed Central  Google Scholar 

  • Otvös K, Pasternak TP, Miskolczi P, Domoki M, Dorjgotov D, Szucs A, Bottka S, Dudits D, Fehér A (2005) Nitric oxide is required for, and promotes auxin-mediated activation of, cell division and embryogenic cell formation but does not influence cell cycle progression in alfalfa cell cultures. Plant J 43:849–860

    Article  PubMed  Google Scholar 

  • Overmyer K, Brosché M, Kangasjärvi J (2003) Reactive oxygen species and hormonal control of cell death. Trends Plant Sci 8:335–342

    Article  CAS  PubMed  Google Scholar 

  • Regan S, Bourquin V, Tuominen H, Sundberg B (1999) Accurate and high resolution in situ hybridization analysis of gene expression in secondary stem tissues. Plant J 19:363–369

    Article  CAS  PubMed  Google Scholar 

  • Sagi M, Fluhr R (2006) Production of reactive oxygen species by plant NADPH oxidases. Plant Physiol 141:336–340

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sanz L, Albertos P, Mateos I, Sánchez-Vicente I, Lechón T, Fernández-Marcos M, Lorenzo O (2015) Nitric oxide (NO) and phytohormones crosstalk during early plant development. J Exp Bot 66:2857–2868

    Article  CAS  PubMed  Google Scholar 

  • Smagghe BJ, Hoy JA, Percifield R, Kundu S, Hargrove MS, Sarath G, Hilbert JL, Watts RA, Dennis ES, Peacock WJ, Dewilde S, Moens L, Blouin GC, Olson JS, Appleby CA (2009) Review: correlations between oxygen affinity and sequence classifications of plant hemoglobins. Biopolymers 91:1083–1096

    Article  CAS  PubMed  Google Scholar 

  • Son S, Chitnis VR, Liu A, Gao F, Nguyen TN, Ayele BT (2016) Abscisic acid metabolic genes of wheat (Triticum aestivum L.): identification and functionality in seed dormancy and dehydration tolerance. Planta 244:429–447

    Article  CAS  PubMed  Google Scholar 

  • Stasolla C, Yeung EC (2003) Recent advances in conifer somatic embryogenesis: improving somatic embryo quality. Plant Cell Tiss Org Cult 74:15–35

    Article  CAS  Google Scholar 

  • Steffens B, Sauter M (2005) Epidermal cell death in rice is regulated by ethylene, gibberellin, and abscisic acid. Plant Physiol 139:713–721

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi H, Yamauchi T, Rajhi I, Nishizawa NK, Nakazono M (2015) Transcript profiles in cortical cells of maize primary root during ethylene-induced lysigenous aerenchyma formation under aerobic conditions. Ann Bot 115:879–894

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Torres MA, Dangl JL (2005) Functions of the respiratory burst oxidase in biotic interactions, abiotic stress and development. Curr Opin Plant Biol 8:397–403

    Article  CAS  PubMed  Google Scholar 

  • Trivellini A, Ferrante A, Vernieri P, Serra G (2011) Effects of abscisic acid on ethylene biosynthesis and perception in Hibiscus rosa-sinensis L. flower development. J Exp Bot 62:5437–5452

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Van Breusegem F, Dat JF (2006) Reactive oxygen species in plant cell death. Plant Physiol 141:384–390

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang P, Du Y, Hou YJ, Zhao Y, Hsu CC, Yuan F, Zhu X, Tao WA, Song CP, Zhu JK (2015) Nitric oxide negatively regulates abscisic acid signaling in guard cells by S-nitrosylation of OST1. Proc Natl Acad Sci USA 112:613–618

    Article  CAS  PubMed  Google Scholar 

  • Watts RA, Hunt PW, Hvitved AN, Hargrove MS, Peacock WJ, Dennis ES (2001) A hemoglobin from plants homologous to truncated hemoglobins of microorganisms. Proc Natl Acad Sci USA 98:10119–10124

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshimoto K, Jikumaru Y, Kamiya Y, Kusano M, Consonni C, Panstruga R, Ohsumi Y, Shirasu K (2009) Autophagy negatively regulates cell death by controlling NPR1-dependent salicylic acid signaling during senescence and the innate immune response in Arabidopsis. Plant Cell 21:2914–2927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Young TE, Gallie DR (2000) Programmed cell death during endosperm development. In: Lam E, Fukuda H, Greenberg J (eds) Programmed cell death in higher plants. Springer, Netherlands, pp 39–57

    Chapter  Google Scholar 

  • Youseff M, Mira MM, Renault S, Hill RD, Stasolla C (2016) Phytoglobin expression influences soil flooding response of corn plants. Ann Bot 118:919–931

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by an NSERC Discovery Grant to CS. The valuable technical assistance of Mr. Durnin is acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Claudio Stasolla.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1: Figure S1. Somatic embryogenesis in maize (PPTX 1411 kb)

Supplementary material 2: Figure S2. Effects of ABA on the number of fully developed somatic embryos (PPTX 40 kb)

425_2018_2862_MOESM3_ESM.pptx

Supplementary material 3: Figure S3. Effects of NO manipulations on the expression of ABA biosynthetic genes (PPTX 63 kb)

Supplementary material 4 (DOC 60 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kapoor, K., Mira, M.M., Ayele, B.T. et al. Phytoglobins regulate nitric oxide-dependent abscisic acid synthesis and ethylene-induced program cell death in developing maize somatic embryos. Planta 247, 1277–1291 (2018). https://doi.org/10.1007/s00425-018-2862-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-018-2862-5

Keywords

Navigation