Skip to main content
Log in

Detection of autophagy processes during the development of nonarticulated laticifers in Euphorbia kansui Liou

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Autophagy is involved in cytoplasmic degradation through directly engulfing cytosol and organelles by autophagosomes and then fusing with lysosome-like vesicles during the development of nonarticulated laticifers in Euphorbia kansui Liou.

Autophagy has been reported to play an important role in a wide range of eukaryotic organisms during responses to various abiotic and biotic stresses. However, until recently, the functions of autophagy in normal plant differentiation and development were still in their infancy. Nonarticulated laticifers, a type of secretory tissue in plants, undergo the degradation of cytosol and organelles during their development. However, little evidence of autophagy in laticifer differentiation has been provided. In the present study, using anti-ATG8 antibody-Alexa Fluor 488, Lyso-Tracker Red (LTR) and monodansylcadaverine (MDC) as markers for detecting autophagosomes, as well as autophagy-related structures, we observed that the green fluorescence of ATG8a largely colocalized with the red fluorescence of LTR and purple fluorescence of MDC and the quantity of autophagosomes experienced a trend from less to more to less during laticifer development. Additionally, we described the autophagy process during the development of nonarticulated laticifers in Euphorbia kansui Liou at the ultrastructural level in detail. In addition, further immunogold TEM studies also verified the presence of autophagosomes, autolysosomes and lysosome-like structures in laticifers. Taken together, these results suggest that autophagy contributes to the development of the nonarticulated laticifers in E. kansui Liou and that autophagosomes fuse with lysosome-like structures for degradation. These results will lay an important foundation for further studies on laticifer regulation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12

Similar content being viewed by others

Abbreviations

IM:

Isolation membrane

ATG/ATG :

Autophagy-related protein/gene

TEM:

Transmission electron microscopy

LTR:

Lyso-tracker red

MDC:

Monodansylcadaverine

rER:

Rough endoplasmic reticulum

References

  • Avila-Ospina L, Moison M, Yoshimoto K, Masclaux-Daubresse C (2014) Autophagy, plant senescence, and nutrient recycling. J Exp Bot 65(14):3799–3811

    Article  PubMed  Google Scholar 

  • Barth H, Meiling-Wesse K, Epple UD, Thumm M (2001) Autophagy and the cytoplasm to vacuole targeting pathway both require Aut10p. FEBS Lett 508(1):23–28

    Article  CAS  PubMed  Google Scholar 

  • Bassham DC (2007) Plant autophagy–more than a starvation response. Curr Opin Plant Biol 10(6):587–593

    Article  CAS  PubMed  Google Scholar 

  • Cai X, Li W, Yin L (2009) Ultrastructure and cytochemical localization of acid phosphatase of laticifers in Euphorbia kansui Liou. Protoplasma 238(1–4):3–10

    Article  CAS  PubMed  Google Scholar 

  • Cai Y, Zhuang X, Wang J, Wang H, Lam SK, Gao C, Wang X, Jiang L (2012) Vacuolar degradation of two integral plasma membrane proteins, AtLRR84A and OsSCAMP1, is cargo ubiquitination-independent and prevacuolar compartment-mediated in plant cells. Traffic 13(7):1023–1040

    Article  CAS  PubMed  Google Scholar 

  • Contento AL, Xiong Y, Bassham DC (2005) Visualization of autophagy in Arabidopsis using the fluorescent dye monodansylcadaverine and a GFP-AtATG8e fusion protein. Plant J 42(4):598–608

    Article  CAS  PubMed  Google Scholar 

  • Costa L, Amaral C, Teixeira N, Georgina CD, Fonseca BM (2016) Cannabinoid-induced autophagy: protective or death role? Prostaglandins Other Lipid Mediat 122:54–63

    Article  CAS  PubMed  Google Scholar 

  • Fahn A (1979) Secretory tissues in plants. Academic Press, London

    Google Scholar 

  • Fahn A (2002) Functions and location of secretory tissues in plants and their possible evolutionary trends. Isr J Plant Sci 50(Suppl):S59–S64

    Google Scholar 

  • Fineran BA (1983) Differentiation of non-articulated laticifers in poinsettia (Euphorbia pulcherrima Willd.). Ann Bot 52(3):279–293

    Article  Google Scholar 

  • Ghiglione HO, Gonzalez FG, Serrago R, Maldonado SB, Chilcott C, Curá JA, Miralles DJ, Zhu T, Casal JJ (2008) Autophagy regulated by day length determines the number of fertile florets in wheat. Plant J 55(6):1010–1024

    Article  CAS  PubMed  Google Scholar 

  • Hagel JM, Yeung EC, Facchini PJ (2008) Got milk? the secret life of laticifers. Trends Plant Sci 13(12):631–639

    Article  CAS  PubMed  Google Scholar 

  • Hanamata S, Kurusu T, Okada M, Suda A, Kawamura K, Tsukada E, Kuchitsu K (2013) In vivo imaging and quantitative monitoring of autophagic flux in tobacco BY-2 cells. Plant Signal Behav 8(1):e22510–e22510

    Article  PubMed  Google Scholar 

  • Harrisonlowe NJ, Olsen LJ (2008) Autophagy protein 6 (ATG6) is required for pollen germination, in Arabidopsis thaliana. Autophagy 4(3):339–348

    Article  CAS  Google Scholar 

  • Hayashi-Nishino M, Fujita N, Noda T, Yamaguchi A, Yoshimori T, Yamamoto A (2009) A subdomain of the endoplasmic reticulum forms a cradle for autophagosome formation. Nat Cell Biol 11(12):1433–1437

    Article  CAS  PubMed  Google Scholar 

  • Hofius D, Schultz-Larsen T, Joensen J, Tsitsigiannis DI, Petersen NH, Mattsson O, Jørgensen LB, Jones JD, Mundy J, Petersen M (2009) Autophagic components contribute to hypersensitive cell death in Arabidopsis. Cell 137(4):773–783

    Article  CAS  PubMed  Google Scholar 

  • Inamdar JA, Murugan V, Subramanian RB (1988) Ultrastructure of non-articulated laticifers in Allamanda violacea. Ann Bot 62(6):583–588

    Article  Google Scholar 

  • Jiang L, Rogers JC (1998) Integral membrane protein sorting to vacuoles, in plant cells: evidence for two pathways. J Cell Biol 143(5):1183–1199

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Katsiarimpa A, Anzenberger F, Schlager N, Neubert S, Hauser MT, Schwechheimer C, Isono E (2011) The Arabidopsis deubiquitinating enzyme AMSH3 interacts with ESCRT-III subunits and regulates their localization. Plant Cell 23(8):3026–3040

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kellner R, De la Concepcion JC, Maqbool A, Kamoun S, Dagdas YF (2017) ATG8 expansion: a driver of selective autophagy diversification? Trends Plant Sci 22(3):204

    Article  CAS  PubMed  Google Scholar 

  • Klionsky DJ, Abeliovich H, Agostinis P, Agrawal DK, Aliev G, Askew DS et al (2008) Guidelines for the use and interpretation of assays for monitoring autophagy in higher eukaryotes. Autophagy 8(4):445–544

    Article  Google Scholar 

  • Kwon SI, Cho HJ, Jung JH, Yoshimoto K, Shirasu K, Park OK (2010) The Rab GTPase RabG3b functions in autophagy and contributes to tracheary element differentiation in Arabidopsis. Plant J 64(1):151–164

    CAS  PubMed  Google Scholar 

  • Kwon SI, Cho HJ, Kim SR, Park OK (2013) The Rab GTPase RabG3b positively regulates autophagy and immunity-associated hypersensitive cell death in Arabidopsis. Plant Physiol 161(4):1722–1736

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lam SK, Siu CL, Hillmer S, Jang S, An G, Robinson DG, Jiang L (2007) Rice scamp1 defines clathrin-coated, trans-golgi-located tubular-vesicular structures as an early endosome in tobacco BY-2 cells. Plant Cell 19(1):296–319

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lamb CA, Yoshimori T, Tooze SA (2013) The autophagosome: origins unknown, biogenesis complex. Nat Rev Mol Cell Biol 14(12):759–774

    Article  CAS  PubMed  Google Scholar 

  • Lee KB, Mahlberg PG (1999) Ultrastructure and development of nonarticulated laticifers in seedlings of Euphorbia maculata L. J Plant Biol 42(1):57–62

    Article  Google Scholar 

  • Liu Y, Bassham DC (2010) Tor is a negative regulator of autophagy in Arabidopsis thaliana. PLoS One 5(7):e11883

    Article  PubMed  PubMed Central  Google Scholar 

  • Liu Y, Schiff M, Czymmek K, Tallóczy Z, Levine B, Dinesh-Kumar SP (2005) Autophagy regulates programmed cell death during the plant innate immune response. Cell 121(4):567–577

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Burgos JS, Deng Y, Srivastava R, Howell SH, Bassham DC (2012) Degradation of the endoplasmic reticulum by autophagy during endoplasmic reticulum stress in Arabidopsis. Plant Cell 24(11):4635–4651

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu G, Tian D, Shi C, Wang DM (2016) Autophagy is induced in haustorial mother cells of Puccinia triticina, and is necessary for plant infection. Eur J Plant Pathol 147(4):1–11

    Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408

    Article  CAS  PubMed  Google Scholar 

  • Matsunaga K, Morita E, Saitoh T, Akira S, Ktistakis NT, Izumi T, Noda T, Yoshimori T (2010) Autophagy requires endoplasmic reticulum targeting of the PI3-kinase complex via Atg14L. J Cell Biol 190(4):511–521

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Meijer WH, van der Klei IJ, Veenhuis M, Kiel JA (2007) ATG genes involved in non-selective autophagy are conserved from yeast to man, but the selective Cvt and pexophagy pathways also require organism-specific genes. Autophagy 3(2):106–116

    Article  CAS  PubMed  Google Scholar 

  • Mesquita JF, Dias JDS (1984) Ultrastructural and cytochemical study of the laticifers of Cannabis sativa L. Bol Soc Brot 57:337–356

    Google Scholar 

  • Mitou G, Budak H (2009) Gozuacik D (2009) Techniques to study autophagy in plants. Int J Genom 2:451357

    Google Scholar 

  • Mizushima N (2007) Autophagy: process and function. Gene Dev 21(22):2861

    Article  CAS  PubMed  Google Scholar 

  • Mizushima N, Komatsu M (2011) Autophagy: renovation of cells and tissues. Cell 147(4):728–741

    Article  CAS  PubMed  Google Scholar 

  • Mizushima N, Levine B, Cuervo AM, Klionsky DJ (2008) Autophagy fights disease through cellular self-digestion. Nature 451(7182):1069–1075

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moriyasu Y, Ohsumi Y (1996) Autophagy in tobacco suspension-cultured cells in response to sucrose starvation. Plant Physiol 111(4):1233–1241

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Moriyasu Y, Hattori M, Jauh GY, Rogers JC (2003) Alpha tonoplast intrinsic protein is specifically associated with vacuole membrane involved in an autophagic process. Plant Cell Physiol 44(8):795–802

    Article  CAS  PubMed  Google Scholar 

  • Munafo DB, Colombo MI (2001) A novel assay to study autophagy: regulation of autophagosome vacuole size by amino acid deprivation. J Cell Sci 114(20):3619–3629

    CAS  PubMed  Google Scholar 

  • Nadal M, Gold SE (2012) Assessment of autophagosome formation by transmission electron microscopy. Methods Mol Biol 835:481–489

    Article  CAS  PubMed  Google Scholar 

  • Rachmilevita T, Fahn A (1982) Ultrastructure and development of the laticifers of Ficus carica L. Ann Bot 49:13–22

    Article  Google Scholar 

  • Reyes FC, Chung T, Holding D, Jung R, Vierstra R, Otegui MS (2011) Delivery of prolamins to the protein storage vacuole in maize aleurone cells. Plant Cell 23(2):769–784

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rodriguez-Enriquez S, Kim I, Currin RT, Lemasters JJ (2006) Tracker dyes to probe mitochondrial autophagy (mitophagy) in rat hepatocytes. Autophagy 2(1):39–46

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ryabovol VV, Minibayeva FV (2016) Molecular mechanisms of autophagy in plants: role of ATG8 proteins in formation and functioning of autophagosomes. Biochemistry 81(4):348–363

    CAS  PubMed  Google Scholar 

  • Sakoh-Nakatogawa M, Kirisako H, Nakatogawa H, Ohsumi Y (2015) Localization of Atg3 to autophagy-related membranes and its enhancement by the Atg8-family interacting motif to promote expansion of the membranes. FEBS Lett 589(6):744–749

    Article  CAS  PubMed  Google Scholar 

  • Stockstill BL, Nessler CL (1986) Ultrastructural observations on the nonarticulated, branched laticifers in Nerium oleander L. (Apocynaceae). Phytomorphology 36:347–355

    Google Scholar 

  • Suzuki K, Kirisako T, Kamada Y, Mizushima N, Noda T, Ohsumi Y (2001) The pre-autophagosomal structure organized by concerted functions of APG genes is essential for autophagosome formation. EMBO J 20(21):5971–5981

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanida I, Minematsu-Ikeguchi N, Ueno T, Kominami E (2005) Lysosomal turnover, but not a cellular level, of endogenous LC3 is a marker for autophagy. Autophagy 1(2):84–91

    Article  CAS  PubMed  Google Scholar 

  • Thompson AR, Doelling JH, Suttangkakul A, Vierstra RD (2005) Autophagic nutrient recycling in Arabidopsis directed by the ATG8 and ATG12 conjugation pathways. Plant Physiol 138(4):2097–2110

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Uemura T, Yamamoto M, Kametaka A, Sou YS, Yabashi A, Yamada A, Annoh H, Kametaka S, Komatsu M, Waguri S (2014) A cluster of thin tubular structures mediates transformation of the endoplasmic reticulum to autophagic isolation membrane. Mol Cell Biol 34(9):1695–1706

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang P, Sun X, Jia X, Wang N, Gong X, Ma F (2016) Characterization of an autophagy-related gene MdATG8i from apple. Front Plant Sci 7:720

    PubMed  PubMed Central  Google Scholar 

  • Wiederanders B (2003) Structure-function relationships in class CA1 cysteine peptidase propeptides. Acta Biochim Pol 50(3):691–713

    CAS  PubMed  Google Scholar 

  • Xie Z, Klionsky DJ (2007) Autophagosome formation: core machinery and adaptations. Nat Cell Biol 9(10):1102–1109

    Article  CAS  PubMed  Google Scholar 

  • Xie Z, Nair U, Klionsky DJ (2008) Atg8 controls phagophore expansion during autophagosome formation. Mol Biol Cell 19(8):3290–3298

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong Y, Contento AL, Nguyen PQ, Bassham DC (2007) Degradation of oxidized proteins by autophagy during oxidative stress in Arabidopsis. Plant Physiol 143(1):291–299

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yamada T, Ichimura K, Kanekatsu M, van Doorn WG (2009) Homologs of genes associated with programmed cell death in animal cells are differentially expressed during senescence of Ipomoea nil petals. Plant Cell Physiol 50(3):610–625

    Article  CAS  PubMed  Google Scholar 

  • Yang X, Srivastava R, Howell SH, Bassham DC (2016) Activation of autophagy by unfolded proteins during endoplasmic reticulum stress. Plant J 85(1):83–95

    Article  CAS  PubMed  Google Scholar 

  • Yano K, Suzuki T, Moriyasu Y (2007) Constitutive autophagy in plant root cells. Autophagy 3(4):360–362

    Article  CAS  PubMed  Google Scholar 

  • Yoshimori T (2010) The origin of the autophagosomal membrane. Nat Cell Biol 12(9):831

    Article  PubMed  Google Scholar 

  • Yoshimoto K, Jikumaru Y, Kamiya Y, Kusano M, Consonni C, Panstruga R, Ohsumi Y, Shirasu K (2009) Autophagy negatively regulates cell death by controlling NPR1-dependent salicylic acid signaling during senescence and the innate immune response in Arabidopsis. Plant Cell 21(9):2914–2927

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yoshimoto K, Shibata M, Kondo M, Oikawa K, Sato M, Toyooka K, Shirasu K, Nishimura M, Ohsumi Y (2014) Organ-specific quality control of plant peroxisomes is mediated by autophagy. J Cell Sci 127(6):1161–1168

    Article  CAS  PubMed  Google Scholar 

  • Zhu J, Deng S, Lu P, Bu W, Li T, Yu L, Xie Z (2016) The Ccl1-Kin28 kinase complex regulates autophagy under nitrogen starvation. J Cell Sci 129(1):135–144

    Article  CAS  PubMed  Google Scholar 

  • Zhuang X, Wang H, Lam SK, Gao C, Wang X, Cai Y, Jiang L (2013) A BAR-domain protein SH3P2, which binds to phosphatidylinositol 3-phosphate and ATG8, regulates autophagosome formation in Arabidopsis. Plant Cell 25(11):4596–4615

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Science Foundation of China (Grant No. 31270220) and State Key Laboratory Research Program Funded by Shaanxi Provincial Education Department (Grant No. 12JS084).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xia Cai.

Ethics declarations

Conflict of interest

The authors declare no conflict of interest.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhang, Q., Wang, D., Zhang, H. et al. Detection of autophagy processes during the development of nonarticulated laticifers in Euphorbia kansui Liou. Planta 247, 845–861 (2018). https://doi.org/10.1007/s00425-017-2835-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-017-2835-0

Keywords

Navigation