Skip to main content

Advertisement

Log in

The genetic and molecular basis of crop height based on a rice model

  • Review
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

This review presents genetic and molecular basis of crop height using a rice crop model. Height is controlled by multiple genes with potential to be manipulated through breeding strategies to improve productivity.

Height is an important factor affecting crop architecture, apical dominance, biomass, resistance to lodging, tolerance to crowding and mechanical harvesting. The impressive increase in wheat and rice yield during the ‘green revolution’ benefited from a combination of breeding for high-yielding dwarf varieties together with advances in agricultural mechanization, irrigation and agrochemical/fertilizer use. To maximize yield under irrigation and high fertilizer use, semi-dwarfing is optimal, whereas extreme dwarfing leads to decreased yield. Rice plant height is controlled by genes that lie in a complex regulatory network, mainly involved in the biosynthesis or signal transduction of phytohormones such as gibberellins, brassinosteroids and strigolactones. Additional dwarfing genes have been discovered that are involved in other pathways, some of which are uncharacterized. This review discusses our current understanding of the regulation of plant height using rice as a well-characterized model and highlights some of the most promising research that could lead to the development of new, high-yielding varieties. This knowledge underpins future work towards the genetic improvement of plant height in rice and other crops.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Abe S, Sado A, Tanaka K, Kisugi T, Asami K, Ota S, Kim HI, Yoneyama K, Xie X, Ohnishi T, Seto Y, Yamaguchi S, Akiyama K, Yoneyama K, Nomura T (2014) Carlactone is converted to carlactonoic acid by MAX1 in Arabidopsis and its methyl ester can directly interact with AtD14 in vitro. Proc Nati Acad Sci USA 11:18084–18089. doi:10.1073/pnas.1410801111

    Article  CAS  Google Scholar 

  • Achard P, Genschik P (2009) Releasing the brakes of plant growth: how GAs shutdown DELLA proteins. J Exp Bot 60:1085–1092. doi:10.1093/jxb/ern301

    Article  CAS  PubMed  Google Scholar 

  • Akiyama K, Matsuzaki K, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824–827. doi:10.1038/nature03608

    Article  CAS  PubMed  Google Scholar 

  • Alder A, Jamil M, Marzorati M, Bruno M, Vermathen M, Bigler P, Ghisla S, Bouwmeester H, Beyer P, Al-Babili S (2012) The path from beta-carotene to carlactone, a strigolactone-like plant hormone. Science (New York, N Y) 335:1348–1351. doi:10.1126/science.1218094

    Article  CAS  Google Scholar 

  • Arite T, Iwata H, Ohshima K, Maekawa M, Nakajima M, Kojima M, Sakakibara H, Kyozuka J (2007) DWARF10, an RMS1/MAX4/DAD1 ortholog, controls lateral bud outgrowth in rice. Plant J 51:1019–1029. doi:10.1111/j.1365-313X.2007.03210.x

    Article  CAS  PubMed  Google Scholar 

  • Asano K, Hirano K, Ueguchitanaka M, Angelesshim RB, Komura T, Satoh H, Kitano H, Matsuoka M, Ashikari M (2009) Isolation and characterization of dominant dwarf mutants, Slr1-d, in rice. Mol Genet Genom 281:223–231

    Article  CAS  Google Scholar 

  • Asano K, Miyao A, Hirochika H, Kitano H, Matsuoka M, Ashikari M (2010) SSD1, which encodes a plant-specific novel protein, controls plant elongation by regulating cell division in rice. Proc Jpn Acad B Phys 86:265–273

    Article  CAS  Google Scholar 

  • Ashikari M, Wu J, Yano M, Sasaki T, Yoshimura A (1999) Rice gibberellin-insensitive dwarf mutant gene Dwarf 1 encodes the alpha-subunit of GTP-binding protein. Proc Nati Acad Sci USA 96:10284–10289

    Article  CAS  Google Scholar 

  • Ashikari M, Sasaki A, Ueguchi-Tanaka M, Itoh H, Nishimura A, Datta S, Ishiyama K, Saito T, Kobayashi M, Khush GS (2002) Loss-of-function of a rice gibberellin biosynthetic gene, GA20 oxidase (GA20ox-2), led to the rice’ green revolution’. Breed Sci 52:143–150

    Article  CAS  Google Scholar 

  • Ayano M, Kani T, Kojima M, Sakakibara H, Kitaoka T, Kuroha T, Angelesshim RB, Kitano H, Nagai K, Ashikari M (2015) Gibberellin biosynthesis and signal transduction is essential for internode elongation in deepwater rice. Plant Cell Environ 37:2313–2324

    Google Scholar 

  • Bai MY, Zhang LY, Gampala SS, Zhu SW, Song WY, Chong K, Wang ZY (2007) Functions of OsBZR1 and 14-3-3 proteins in brassinosteroid signaling in rice. Proc Nati Acad Sci USA 104:13839–13844. doi:10.1073/pnas.0706386104

    Article  CAS  Google Scholar 

  • Begonia GB, Begonia MT (2007) Plant photosynthetic production as controlled by leaf growth, phenology, and behavior. Photosynthetica 45:321–333

    Article  Google Scholar 

  • Beharav A, Cahaner A, Pinthus M (1998) Genetic correlations between culm length, grain yield and seedling elongation within tall (rht1) and semi-dwarf (Rht1) spring wheat (Trificum aestivum L.). Eur J Agron 9:35–40

    Article  Google Scholar 

  • Beveridge CA, Kyozuka J (2010) New genes in the strigolactone-related shoot branching pathway. Curr Opin Plant Biol 13:34–39. doi:10.1016/j.pbi.2009.10.003

    Article  CAS  PubMed  Google Scholar 

  • Bolle C (2004) The role of GRAS proteins in plant signal transduction and development. Planta 218:683–692. doi:10.1007/s00425-004-1203-z

    Article  CAS  PubMed  Google Scholar 

  • Bonnett D, Ellis M, Rebetzke G, Condon A, Spielmeyer W, Richards R (2001) Dwarfing genes in Australian wheat—present and future. In: Proceedings of the 10th Australian wheat breeders assembly, Mildura, Australia, pp 154–157

  • Botwright TL, Rebetzke GJ, Condon AG, Richards RA (2005) Influence of the gibberellin-sensitive Rht8 dwarfing gene on leaf epidermal cell dimensions and early vigour in wheat (Triticum aestivum L.). Ann Bot 95:631–639. doi:10.1093/aob/mci069

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Butany W, Bhattacharyya R, Daiya L (1959) Inheritance of dwarf character in rice and its interrelationship with the occurrence of anthocyanin pigment in various plant parts. Indian J Genet Plant Breed 19:64–72

    Google Scholar 

  • Butler JD, Byrne PF, Mohammadi V, Chapman PL, Haley SD (2005) Agronomic performance of Rht alleles in a spring wheat population across a range of moisture levels. Crop Sci 45:939–947

    Article  CAS  Google Scholar 

  • Chang T, Zuro C, Marciano R, Loresto G (1984) Semidwarfing genes in rice germplasm collection. Rice Genet Newsl 1:93–94

    Google Scholar 

  • Chapman SC, Mathews KL, Trethowan RM, Singh RP (2007) Relationships between height and yield in near-isogenic spring wheats that contrast for major reduced height genes. Euphytica 157:391–397

    Article  Google Scholar 

  • Choe S, Fujioka S, Noguchi T, Takatsuto S, Yoshida S, Feldmann KA (2001) Overexpression of DWARF4 in the brassinosteroid biosynthetic pathway results in increased vegetative growth and seed yield in Arabidopsis. Plant J 26:573–582

    Article  CAS  PubMed  Google Scholar 

  • Clouse SD (2002) Brassinosteroid signal transduction: clarifying the pathway from ligand perception to gene expression. Mol Cell 10:973–982

    Article  CAS  PubMed  Google Scholar 

  • Dai M, Zhao Y, Ma Q, Hu Y, Hedden P, Zhang Q, Zhou DX (2007) The rice YABBY1 gene is involved in the feedback regulation of gibberellin metabolism. Plant Physiol 144:121–133. doi:10.1104/pp.107.096586

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Davière JM, Achard P (2013) Gibberellin signaling in plants. Development 140:1147–1151

    Article  PubMed  CAS  Google Scholar 

  • Di Rubbo RS, Irani NG, Russinova E (2011) PP2A phosphatases: the “on–off” regulatory switches of brassinosteroid signaling. Sci Signal 4:pe25

    Article  PubMed  CAS  Google Scholar 

  • Diaz J (2016) Characterization of the role of LOB-DOMAIN genes and brassinosteroids in rice architecture. UC Riverside Electronic Theses and Dissertations

  • Divi UK, Krishna P (2009) Brassinosteroid: a biotechnological target for enhancing crop yield and stress tolerance. New Biotechnol 26:131–136. doi:10.1016/j.nbt.2009.07.006

    Article  CAS  Google Scholar 

  • Domagalska MA, Leyser O (2011) Signal integration in the control of shoot branching. Nat Rev Mol Cell Biol 12:211–221. doi:10.1038/nrm3088

    Article  CAS  PubMed  Google Scholar 

  • Emerson RA, Beadle GW, Fraser AC (1935) A summary of linkage studies in maize. Cornell Univ Agric Exp Stn Mem 180:1–83

    Google Scholar 

  • Fischer RA, Quail KJ (1990) The effect of major dwarfing genes on yield potential in spring wheats. Euphytica 46:51–56. doi:10.1007/bf00057618

    Article  Google Scholar 

  • Flintham JE, Borner A, Worland AJ, Gale MD (1997) Optimizing wheat grain yield: effects of Rht (gibberellin-insensitive) dwarfing genes. J Agric Sci 128:11–25

    Article  Google Scholar 

  • Foisset N, Delourme R, Barret P, Renard M (1995) Molecular tagging of the dwarf BREIZH (Bzh) gene in Brassica napus. Theor Appl Genet 91:756–761. doi:10.1007/bf00220955

    Article  CAS  PubMed  Google Scholar 

  • Fonseca S, Chini A, Hamberg M, Adie B, Porzel A, Kramell R, Miersch O, Wasternack C, Solano R (2009) (+)-7-iso-Jasmonoyl-l-isoleucine is the endogenous bioactive jasmonate. Nat Chem Biol 5:344–350

    Article  CAS  PubMed  Google Scholar 

  • Foster AE, Thompson AP (1987) Effects of a semidwarf gene from Jotun on agronomic and quality traits of barley. In: Yasuda S, Kanishi T (eds) Proceedings of the 5th international barley genetics symposium, 1986. Sanyo, Okayama, pp 979–982

    Google Scholar 

  • Fujioka S, Sakurai A (1997) Brassinosteroids. Nat Prod Rep 14:1–10

    Article  CAS  PubMed  Google Scholar 

  • Fujioka S, Yokota T (2003) Biosynthesis and metabolism of brassinosteroids. Annu Rev Plant Biol 54:137–164

    Article  CAS  PubMed  Google Scholar 

  • Fukazawa J, Teramura H, Murakoshi S, Nasuno K, Nishida N, Ito T, Yoshida M, Kamiya Y, Yamaguchi S, Takahashi Y (2014) DELLAs function as coactivators of GAI-ASSOCIATED FACTOR1 in regulation of gibberellin homeostasis and signaling in Arabidopsis. Plant Cell 26:2920–2938

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fukazawa J, Ito T, Kamiya Y, Yamaguchi S, Takahashi Y (2015) Binding of GID1 to DELLAs promotes dissociation of GAF1 from DELLA in GA dependent manner. Plant Sig Beha 10:e1052923-3

    Google Scholar 

  • Futsuhara Y, Kikuchi F (1997) Inheritance of morphological characters. 2. Inheritance of dwarfism. Sci Rice Plant 3:300–308

    Google Scholar 

  • Gao Z, Qian Q, Liu X, Yan M, Feng Q, Dong G, Liu J, Han B (2009) Dwarf 88, a novel putative esterase gene affecting architecture of rice plant. Plant Mol Biol 71:265–276. doi:10.1007/s11103-009-9522-x

    Article  CAS  PubMed  Google Scholar 

  • Gao X, Chen Z, Zhang J, Li X, Chen G, Li X, Wu C (2012) OsLIS-L1 encoding a lissencephaly type-1-like protein with WD40 repeats is required for plant height and male gametophyte formation in rice. Planta 235:713–727. doi:10.1007/s00425-011-1532-7

    Article  CAS  PubMed  Google Scholar 

  • Gomez-Roldan V, Fermas S, Brewer PB, Puech-Pagès V, Dun EA, Pillot J-P, Letisse F, Matusova R, Danoun S, Portais J-C (2008) Strigolactone inhibition of shoot branching. Nature 455:189–194

    Article  CAS  PubMed  Google Scholar 

  • Gomi K, Sasaki A, Itoh H, Ueguchi-Tanaka M, Ashikari M, Kitano H, Matsuoka M (2004) GID2, an F-box subunit of the SCF E3 complex, specifically interacts with phosphorylated SLR1 protein and regulates the gibberellin-dependent degradation of SLR1 in rice. Plant J 37:626–634

    Article  CAS  PubMed  Google Scholar 

  • Grove MD, Spencer GF, Rohwedder WK, Mandava N, Worley JF, Warthen JD, Steffens GL, Flippen-Anderson JL, Cook JC (1979) Brassinolide, a plant growth-promoting steroid isolated from Brassica napus pollen. Nature 281:216–217

    Article  CAS  Google Scholar 

  • Gui J, Zheng S, Liu C, Shen J, Li J, Li L (2016) OsREM4.1 interacts with OsSERK1 to coordinate the interlinking between abscisic acid and brassinosteroid signaling in rice. Dev Cell 38:201–213

    Article  CAS  PubMed  Google Scholar 

  • Guo S, Xu Y, Liu H, Mao Z, Zhang C, Ma Y, Zhang Q, Meng Z, Chong K (2013) The interaction between OsMADS57 and OsTB1 modulates rice tillering via DWARF14. Nat Commun 4:1566. doi:10.1038/ncomms2542

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Harberd NP (2003) Botany. Relieving DELLA restraint. Science (New York, N Y) 299:1853–1854. doi:10.1126/science.1083217

    Article  CAS  Google Scholar 

  • Harberd NP, Belfield E, Yasumura Y (2009) The angiosperm gibberellin-GID1-DELLA growth regulatory mechanism: how an “inhibitor of an inhibitor” enables flexible response to fluctuating environments. Plant Cell 21:1328–1339. doi:10.1105/tpc.109.066969

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hargrove TR, Cabanilla VL (1979) The impact of semidwarf varieties on Asian rice-breeding programs. BioScience 29:731–735

    Article  Google Scholar 

  • Harrison PJ, Newgas SA, Descombes F, Shepherd SA, Thompson AJ, Bugg TD (2015) Biochemical characterization and selective inhibition of β-carotene cis–trans isomerase D27 and carotenoid cleavage dioxygenase CCD8 on the strigolactone biosynthetic pathway. FEBS J 282:3986–4000

    Article  CAS  PubMed  Google Scholar 

  • He Z, Shen Z (1991) Inheritance of panicle exsertion and improvement of male sterile line in rice. Chin J Rice Sci 5:1–6

    Google Scholar 

  • Hedden Peter (2003) The genes of the green revolution. Trends Genet 19:5–9

    Article  CAS  PubMed  Google Scholar 

  • Hedden P (2010) Green revolution genes. Rothamsted Research, Harpenden, Hertfordshire, UK Essay 20.3

  • Hedden P, Kamiya Y (1997) GIBBERELLIN BIOSYNTHESIS: enzymes, genes and their regulation. Annu Rev Plant Physiol Plant Mol Biol 48:431–460. doi:10.1146/annurev.arplant.48.1.431

    Article  CAS  PubMed  Google Scholar 

  • Hedden P, Phillips AL (2000) Gibberellin metabolism: new insights revealed by the genes. Trends Plant Sci 5:523–530

    Article  CAS  PubMed  Google Scholar 

  • Hedden P, Thomas SG (2012) Gibberellin biosynthesis and its regulation. Biochem J 444:11–25

    Article  CAS  PubMed  Google Scholar 

  • Hirano K, Asano K, Tsuji H, Kawamura M, Mori H, Kitano H, Ueguchi-Tanaka M, Matsuoka M (2010) Characterization of the molecular mechanism underlying gibberellin perception complex formation in rice. Plant Cell 22:2680–2696. doi:10.1105/tpc.110.075549

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hirano K, Kouketu E, Katoh H, Aya K, Ueguchi-Tanaka M, Matsuoka M (2012) The suppressive function of the rice DELLA protein SLR1 is dependent on its transcriptional activation activity. Plant J 71:443–453. doi:10.1111/j.1365-313X.2012.05000.x

    CAS  PubMed  Google Scholar 

  • Hong Z, Ueguchi-Tanaka M, Shimizu-Sato S, Inukai Y, Fujioka S, Shimada Y, Takatsuto S, Agetsuma M, Yoshida S, Watanabe Y, Uozu S, Kitano H, Ashikari M, Matsuoka M (2002) Loss-of-function of a rice brassinosteroid biosynthetic enzyme, C-6 oxidase, prevents the organized arrangement and polar elongation of cells in the leaves and stem. Plant J 32:495–508

    Article  CAS  PubMed  Google Scholar 

  • Hong Z, Ueguchi-Tanaka M, Umemura K, Uozu S, Fujioka S, Takatsuto S, Yoshida S, Ashikari M, Kitano H, Matsuoka M (2003) A rice brassinosteroid-deficient mutant, ebisu dwarf (d2), is caused by a loss of function of a new member of cytochrome P450. Plant Cell 15:2900–2910. doi:10.1105/tpc.014712

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hong Z, Ueguchi-Tanaka M, Fujioka S, Takatsuto S, Yoshida S, Hasegawa Y, Ashikari M, Kitano H, Matsuoka M (2005) The Rice brassinosteroid-deficient dwarf2 mutant, defective in the rice homolog of Arabidopsis DIMINUTO/DWARF1, is rescued by the endogenously accumulated alternative bioactive brassinosteroid, dolichosterone. Plant Cell 17:2243–2254. doi:10.1105/tpc.105.030973

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu X, Qian Q, Xu T, Zhang Y, Dong G, Gao T, Xie Q, Xue Y (2013) The U-box E3 ubiquitin ligase TUD1 functions with a heterotrimeric G alpha subunit to regulate brassinosteroid-mediated growth in rice. PLoS Genet 9:e1003391. doi:10.1371/journal.pgen.1003391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hu Z, Yamauchi T, Yang J, Jikumaru Y, TsuchidaMayama T, Ichikawa H, Takamure I, Nagamura Y, Tsutsumi N, Yamaguchi S (2014) Strigolactone and cytokinin act antagonistically in regulating rice mesocotyl elongation in darkness. Plant Cell Physiol 55:30–41

    Article  CAS  PubMed  Google Scholar 

  • Huang X, Qian Q, Liu Z, Sun H, He S, Luo D, Xia G, Chu C, Li J, Fu X (2009) Natural variation at the DEP1 locus enhances grain yield in rice. Nat Genet 41:494–497

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Tang D, Shen Y, Qin B, Hong L, You A, Li M, Wang X, Yu H, Gu M, Cheng Z (2010) Activation of gibberellin 2-oxidase 6 decreases active gibberellin levels and creates a dominant semi-dwarf phenotype in rice (Oryza sativa L.). J Genet Genom 37:23–36. doi:10.1016/s1673-8527(09)60022-9

    Article  CAS  Google Scholar 

  • Ikeda A, Ueguchi-Tanaka M, Sonoda Y, Kitano H, Koshioka M, Futsuhara Y, Matsuoka M, Yamaguchi J (2001) slender rice, a constitutive gibberellin response mutant, is caused by a null mutation of the SLR1 gene, an ortholog of the height-regulating gene GAI/RGA/RHT/D8. Plant Cell 13:999–1010

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ishikawa S, Maekawa M, Arite T, Onishi K, Takamure I, Kyozuka J (2005) Suppression of tiller bud activity in tillering dwarf mutants of rice. Plant Cell Physiol 46:79–86. doi:10.1093/pcp/pci022

    Article  CAS  PubMed  Google Scholar 

  • Itoh H, Ueguchi-Tanaka M, Sentoku N, Kitano H, Matsuoka M, Kobayashi M (2001) Cloning and functional analysis of two gibberellin 3 beta -hydroxylase genes that are differently expressed during the growth of rice. Proc Nati Acad Sci USA 98:8909–8914. doi:10.1073/pnas.141239398

    Article  CAS  Google Scholar 

  • Itoh H, Tatsumi T, Sakamoto T, Otomo K, Toyomasu T, Kitano H, Ashikari M, Ichihara S, Matsuoka M (2004) A rice semi-dwarf gene, Tan-Ginbozu (D35), encodes the gibberellin biosynthesis enzyme, ent-kaurene oxidase. Plant Mol Biol 54:533–547. doi:10.1023/b:plan.0000038261.21060.47

    Article  CAS  PubMed  Google Scholar 

  • Iwata N, Satoh H, Omura T (1977) Linkage studies in rice. Linkage groups for 6 genes newly described. Jpn J Breed 27:250–251

    Google Scholar 

  • Iwata N, Takamure I, Wu H, Siddinq E, Rutger J (1995) List of genes for various traits (with chromosome and main literature). Rice Genet Newsl 12:61–93

    Google Scholar 

  • Jiang Y, Bao L, Jeong SY, Kim SK, Xu C, Li X, Zhang Q (2012) XIAO is involved in the control of organ size by contributing to the regulation of signaling and homeostasis of brassinosteroids and cell cycling in rice. Plant J 70:398–408. doi:10.1111/j.1365-313X.2011.04877.x

    Article  CAS  PubMed  Google Scholar 

  • Jiang L, Liu X, Xiong G, Liu H, Chen F, Wang L, Meng X, Liu G, Yu H, Yuan Y, Yi W, Zhao L, Ma H, He Y, Wu Z, Melcher K, Qian Q, Xu HE, Wang Y, Li J (2013) DWARF 53 acts as a repressor of strigolactone signalling in rice. Nature 504:401–405. doi:10.1038/nature12870

    Article  CAS  PubMed  Google Scholar 

  • Kameoka H, Kyozuka J (2015) Downregulation of rice DWARF 14 LIKE suppress mesocotyl elongation via a strigolactone independent pathway in the dark. J Genet Genom 42:119–124

    Article  Google Scholar 

  • Katsir L, Schilmiller AL, Staswick PE, He SY, Howe GA (2008) COI1 is a critical component of a receptor for jasmonate and the bacterial virulence factor coronatine. Proc Nat Acad Sci 105:7100–7105

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Khush GS (1999) Green revolution: preparing for the 21st century. Genome 42:646–655

    Article  CAS  PubMed  Google Scholar 

  • Kim SR, Yang JI, Moon S, Ryu CH, An K, Kim KM, Yim J, An G (2009) Rice OGR1 encodes a pentatricopeptide repeat-DYW protein and is essential for RNA editing in mitochondria. Plant J 59:738–749. doi:10.1111/j.1365-313X.2009.03909.x

    Article  CAS  PubMed  Google Scholar 

  • Kinoshita T (1995) Report of committee on gene symbolization, nomenclature and linkage groups. Rice Genet Newsl 12:9–153

    Google Scholar 

  • Koh S, Lee SC, Kim MK, Koh JH, Lee S, An G, Choe S, Kim SR (2007) T-DNA tagged knockout mutation of rice OsGSK1, an orthologue of Arabidopsis BIN2, with enhanced tolerance to various abiotic stresses. Plant Mol Biol 65:453–466. doi:10.1007/s11103-007-9213-4

    Article  CAS  PubMed  Google Scholar 

  • Kovi MR, Zhang Y, Yu S, Yang G, Yan W, Xing Y (2011) Candidacy of a chitin-inducible gibberellin-responsive gene for a major locus affecting plant height in rice that is closely linked to green revolution gene sd1. Theor Appl Genet 123:705–714. doi:10.1007/s00122-011-1620-x

    Article  CAS  PubMed  Google Scholar 

  • Kwon M, Fujioka S, Jeon JH, Kim HB, Takatsuto S, Yoshida S, An CS, Choe S (2005) A double mutant for the CYP85A1 and CYP85A2 genes of Arabidopsis exhibits a brassinosteroid dwarf phenotype. J Plant Biol 48:237–244

    Article  CAS  Google Scholar 

  • Lawit SJ, Wych HM, Xu D, Kundu S, Tomes DT (2010) Maize DELLA proteins dwarf plant8 and dwarf plant9 as modulators of plant development. Plant Cell Physiol 51:1854–1868

    Article  CAS  PubMed  Google Scholar 

  • Lee DJ, Zeevaart JA (2005) Molecular cloning of GA 2-oxidase3 from spinach and its ectopic expression in Nicotiana sylvestris. Plant Physiol 138:243–254. doi:10.1104/pp.104.056499

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Leyser O (2009) The control of shoot branching: an example of plant information processing. Plant Cell Environ 32:694–703. doi:10.1111/j.1365-3040.2009.01930.x

    Article  CAS  PubMed  Google Scholar 

  • Li JM, Yuan LP (2000) Hybrid rice: genetics, breeding, and seed production. Plant Breed Rev 17:15–158

    CAS  Google Scholar 

  • Li F, Asami T, Wu X, Tsang EW, Cutler AJ (2007) A putative hydroxysteroid dehydrogenase involved in regulating plant growth and development. Plant Physiol 145:87–97. doi:10.1104/pp.107.100560

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li M, Xiong G, Li R, Cui J, Tang D, Zhang B, Pauly M, Cheng Z, Zhou Y (2009) Rice cellulose synthase-like D4 is essential for normal cell-wall biosynthesis and plant growth. Plant J 60:1055–1069. doi:10.1111/j.1365-313X.2009.04022.x

    Article  CAS  PubMed  Google Scholar 

  • Li H, Jiang L, Youn JH, Sun W, Cheng Z, Jin T, Ma X, Guo X, Wang J, Zhang X, Wu F, Wu C, Kim SK, Wan J (2013) A comprehensive genetic study reveals a crucial role of CYP90D2/D2 in regulating plant architecture in rice (Oryza sativa). New Phytol 200:1076–1088. doi:10.1111/nph.12427

    Article  CAS  PubMed  Google Scholar 

  • Li H, Chen G, Yan W (2015) Molecular Characterization of barley 3H semi-dwarf genes. PLoS One 10:e0120558

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Lin H, Wang R, Qian Q, Yan M, Meng X, Fu Z, Yan C, Jiang B, Su Z, Li J, Wang Y (2009) DWARF27, an iron-containing protein required for the biosynthesis of strigolactones, regulates rice tiller bud outgrowth. Plant Cell 21:1512–1525. doi:10.1105/tpc.109.065987

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Liu B, Wu Y, Fu X, Qian Q (2008) Characterizations and molecular mapping of a novel dominant semi-dwarf gene Sdd (t) in rice (Oryza sativa). Plant Breed 127:125–130

    Article  CAS  Google Scholar 

  • Liu W, Wu C, Fu Y, Hu G, Si H, Zhu L, Luan W, He Z, Sun Z (2009) Identification and characterization of HTD2: a novel gene negatively regulating tiller bud outgrowth in rice. Planta 230:649–658. doi:10.1007/s00425-009-0975-6

    Article  CAS  PubMed  Google Scholar 

  • Liu Y, Xu Y, Xiao J, Ma Q, Li D, Xue Z, Chong K (2011) OsDOG, a gibberellin-induced A20/AN1 zinc-finger protein, negatively regulates gibberellin-mediated cell elongation in rice. J Plant Physiol 168:1098–1105. doi:10.1016/j.jplph.2010.12.013

    Article  CAS  PubMed  Google Scholar 

  • Liu HL, Yin ZJ, Xiao L, Xu YN, le Qu Q (2012) Identification and evaluation of omega-3 fatty acid desaturase genes for hyperfortifying alpha-linolenic acid in transgenic rice seed. J Exp Bot 63:3279–3287. doi:10.1093/jxb/ers051

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lo SF, Yang SY, Chen KT, Hsing YI, Zeevaart JA, Chen LJ, Yu SM (2008) A novel class of gibberellin 2-oxidases control semidwarfism, tillering, and root development in rice. Plant Cell 20:2603–2618. doi:10.1105/tpc.108.060913

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Luan W, Liu Y, Zhang F, Song Y, Wang Z, Peng Y, Sun Z (2011) OsCD1 encodes a putative member of the cellulose synthase-like D sub-family and is essential for rice plant architecture and growth. Plant Biotechnol J 9:513–524. doi:10.1111/j.1467-7652.2010.00570.x

    Article  CAS  PubMed  Google Scholar 

  • Luo A, Qian Q, Yin H, Liu X, Yin C, Lan Y, Tang J, Tang Z, Cao S, Wang X, Xia K, Fu X, Luo D, Chu C (2006) EUI1, encoding a putative cytochrome P450 monooxygenase, regulates internode elongation by modulating gibberellin responses in rice. Plant Cell Physiol 47:181–191. doi:10.1093/pcp/pci233

    Article  CAS  PubMed  Google Scholar 

  • Marcia MP, Zhou XR, Zhu QH, Dennis ES, Upadhyaya NM (2005) Isolation and characterization of a Ds-tagged rice (Oryza sativa L.) GA-responsive dwarf mutant defective in an early step of the gibberellin biosynthesis pathway. Plant Cell Rep 23:819–833. doi:10.1007/s00299-004-0896-6

    Article  CAS  Google Scholar 

  • Mcintosh R, Hart G, Gale M (1988) Catalogue of gene symbols for wheat : 1988 supplement. Cereal Res Commun 121–135

  • Miralles D, Slafer G (1995) Yield, biomass and yield components in dwarf, semi-dwarf and tall isogenic lines of spring wheat under recommended and late sowing dates. Plant Breed 114:392–396

    Article  Google Scholar 

  • Mitsunaga S, Tashiro T, Yamaguchi J (1994) Identification and characterization of gibberellin-insensitive mutants selected from among dwarf mutants of rice. TAG Theor Appl Genet 87:705–712. doi:10.1007/bf00222896

    Article  CAS  PubMed  Google Scholar 

  • Monna L, Kitazawa N, Yoshino R, Suzuki J, Masuda H, Maehara Y, Tanji M, Sato M, Nasu S, Minobe Y (2002) Positional cloning of rice semi-dwarfing gene, sd-1: rice “green revolution gene” encodes a mutant enzyme involved in gibberellin synthesis. DNA Res 9:11–17

    Article  CAS  PubMed  Google Scholar 

  • Mori M, Nomura T, Ooka H, Ishizaka M, Yokota T, Sugimoto K, Okabe K, Kajiwara H, Satoh K, Yamamoto K, Hirochika H, Kikuchi S (2002) Isolation and characterization of a rice dwarf mutant with a defect in brassinosteroid biosynthesis. Plant Physiol 130:1152–1161. doi:10.1104/pp.007179

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Muangprom A, Osborn TC (2004) Characterization of a dwarf gene in Brassica rapa, including the identification of a candidate gene. Theor Appl Genet 108:1378–1384. doi:10.1007/s00122-003-1551-2

    Article  CAS  PubMed  Google Scholar 

  • Murai M, Shinbashi N, Kusutani A, Hirose S, Takamure I, Kinoshita T (1990) Identification of dwarf genes in rice lines, Yukara dwarf and Fukei 71, and its response to environmental factors. Jpn J Breed 40:33–45

    Article  Google Scholar 

  • Nakagawa H, Tanaka A, Tanabata T, Ohtake M, Fujioka S, Nakamura H, Ichikawa H, Mori M (2012) Short grain1 decreases organ elongation and brassinosteroid response in rice. Plant Physiol 158:1208–1219. doi:10.1104/pp.111.187567

    Article  CAS  PubMed  Google Scholar 

  • Neuffer MG, Coe EH, Wessler SR (1997) Mutants of maize. Cold Spring Harbor Laboratory Press, New York, pp 1–255

    Google Scholar 

  • Ogawa S, Toyomasu T, Yamane H, Murofushi N, Ikeda R, Morimoto Y, Nishimura Y, Omori T (1996) A step in the biosynthesis of gibberellins that is controlled by the mutation in the semi-dwarf rice cultivar Tan-Ginbozu. Plant Cell Physiol 37:363–368

    Article  CAS  Google Scholar 

  • Ogawa M, Kusano T, Katsumi M, Sano H (2000) Rice gibberellin-insensitive gene homolog, OsGAI, encodes a nuclear-localized protein capable of gene activation at transcriptional level. Gene 245:21–29

    Article  CAS  PubMed  Google Scholar 

  • Ohnishi T, Szatmari AM, Watanabe B, Fujita S, Bancos S, Koncz C, Lafos M, Shibata K, Yokota T, Sakata K, Szekeres M, Mizutani M (2006) C-23 hydroxylation by Arabidopsis CYP90C1 and CYP90D1 reveals a novel shortcut in brassinosteroid biosynthesis. Plant Cell 18:3275–3288. doi:10.1105/tpc.106.045443

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ohnishi T, Godza B, Watanabe B, Fujioka S, Hategan L, Ide K, Shibata K, Yokota T, Szekeres M, Mizutani M (2012) CYP90A1/CPD, a brassinosteroid biosynthetic cytochrome P450 of Arabidopsis, catalyzes C-3 oxidation. J Biol Chem 287:31551–31560. doi:10.1074/jbc.M112.392720

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Oki K, Inaba N, Kitagawa K, Fujioka S, Kitano H, Fujisawa Y, Kato H, Iwasaki Y (2009) Function of the alpha subunit of rice heterotrimeric G protein in brassinosteroid signaling. Plant Cell Physiol 50:161–172. doi:10.1093/pcp/pcn182

    Article  CAS  PubMed  Google Scholar 

  • Olszewski N, T-p Sun, Gubler F (2002) Gibberellin signaling biosynthesis, catabolism, and response pathways. Plant Cell 14:S61–S80

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Peng J, Richards DE, Hartley NM, Murphy GP, Devos KM, Flintham JE, Beales J, Fish LJ, Worland AJ, Pelica F (1999) ‘Green revolution’ genes encode mutant gibberellin response modulators. Nature 400:256–261

    Article  CAS  PubMed  Google Scholar 

  • Qiao S, Sun S, Wang L, Wu Z, Li C, Li X, Wang T, Leng L, Tian W, Lu T, Wang X (2017) The RLA1/SMOS1 Transcription Factor Functions with OsBZR1 to Regulate Brassinosteroid Signaling and Rice Architecture. Plant Cell 29:292–309. doi:10.1105/tpc.16.00611

    Article  CAS  PubMed  Google Scholar 

  • Qi W, Sun F, Wang Q, Chen M, Huang Y, Feng YQ, Luo X, Yang J (2011) Rice ethylene-response AP2/ERF factor OsEATB restricts internode elongation by down-regulating a gibberellin biosynthetic gene. Plant Physiol 157:216–228. doi:10.1104/pp.111.179945

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rebetzke G, Ellis M, Bonnett D, Condon A, Falk D, Richards R (2011) The Rht13 dwarfing gene reduces peduncle length and plant height to increase grain number and yield of wheat. Field Crops Res 124:323–331

    Article  Google Scholar 

  • Rebetzke G, Bonnett D, Ellis M (2012) Combining gibberellic acid-sensitive and insensitive dwarfing genes in breeding of higher-yielding, sesqui-dwarf wheats. Field Crops Res 127:17–25

    Article  Google Scholar 

  • Ross JJ, Murfet IC, Reid JB (1997) Gibberellin mutants. Physiol Plant 100:550–560

    Article  CAS  Google Scholar 

  • Rutger J, Carnahan H (1981) A fourth genetic element to facilitate hybrid cereal production—a recessive tall in rice. Crop Sci 21:373–376

    Article  Google Scholar 

  • Ruyter-Spira C, Al-Babili S, van der Krol S, Bouwmeester H (2013) The biology of strigolactones. Trends Plant Sci 18:72–83

    Article  CAS  PubMed  Google Scholar 

  • Saeda T, Kitano H (1992) Genetic analysis of a short culm-mutant showing the dm-type internode distribution pattern. Jpn J Breed 42:214–215

    Google Scholar 

  • Sakai M, Sakamoto T, Saito T, Matsuoka M, Tanaka H, Kobayashi M (2003) Expression of novel rice gibberellin 2-oxidase gene is under homeostatic regulation by biologically active gibberellins. J Plant Res 116:161–164

    CAS  PubMed  Google Scholar 

  • Sakamoto T, Matsuoka M (2006) Characterization of constitutive photomorphogenesis and DWARFISM homologs in rice (Oryza sativa L.). J Plant Growth Regul 25:245–251

    Article  CAS  Google Scholar 

  • Sakamoto T, Morinaka Y, Ishiyama K, Kobayashi M, Itoh H, Kayano T, Iwahori S, Matsuoka M, Tanaka H (2003) Genetic manipulation of gibberellin metabolism in transgenic rice. Nat Biotechnol 21:909–913. doi:10.1038/nbt847

    Article  CAS  PubMed  Google Scholar 

  • Sakamoto T, Miura K, Itoh H, Tatsumi T, Ueguchi-Tanaka M, Ishiyama K, Kobayashi M, Agrawal GK, Takeda S, Abe K, Miyao A, Hirochika H, Kitano H, Ashikari M, Matsuoka M (2004) An overview of gibberellin metabolism enzyme genes and their related mutants in rice. Plant Physiol 134:1642–1653. doi:10.1104/pp.103.033696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sakamoto T, Morinaka Y, Ohnishi T, Sunohara H, Fujioka S, Ueguchi-Tanaka M, Mizutani M, Sakata K, Takatsuto S, Yoshida S, Tanaka H, Kitano H, Matsuoka M (2006) Erect leaves caused by brassinosteroid deficiency increase biomass production and grain yield in rice. Nat Biotechnol 24:105–109. doi:10.1038/nbt1173

    Article  CAS  PubMed  Google Scholar 

  • Sasaki A, Ashikari M, Ueguchi-Tanaka M, Itoh H, Nishimura A, Swapan D, Ishiyama K, Saito T, Kobayashi M, Khush G (2002) Green revolution: a mutant gibberellin-synthesis gene in rice. Nature 416:701–702

    Article  CAS  PubMed  Google Scholar 

  • Sasaki A, Itoh H, Gomi K, Ueguchi-Tanaka M, Ishiyama K, Kobayashi M, Jeong DH, An G, Kitano H, Ashikari M, Matsuoka M (2003) Accumulation of phosphorylated repressor for gibberellin signaling in an F-box mutant. Science (New York, N Y) 299:1896–1898. doi:10.1126/science.1081077

    Article  CAS  Google Scholar 

  • Sato Y, Sentoku N, Miura Y, Hirochika H, Kitano H, Matsuoka M (1999) Loss-of-function mutations in the rice homeobox gene OSH15 affect the architecture of internodes resulting in dwarf plants. EMBO J 18:992–1002. doi:10.1093/emboj/18.4.992

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sazuka T, Kamiya N, Nishimura T, Ohmae K, Sato Y, Imamura K, Nagato Y, Koshiba T, Nagamura Y, Ashikari M, Kitano H, Matsuoka M (2009) A rice tryptophan deficient dwarf mutant, tdd1, contains a reduced level of indole acetic acid and develops abnormal flowers and organless embryos. Plant J 60:227–241. doi:10.1111/j.1365-313X.2009.03952.x

    Article  CAS  PubMed  Google Scholar 

  • Schomburg FM, Bizzell CM, Lee DJ, Zeevaart JA, Amasino RM (2003) Overexpression of a novel class of gibberellin 2-oxidases decreases gibberellin levels and creates dwarf plants. Plant Cell 15:151–163

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sears RG, Kronstad WE, Metzger RJ (1981) Inheritance of dwarf and semi-dwarf plant height in barley. Crop Sci 21:828–833

    Article  Google Scholar 

  • Shen Z, He Z (1989) Interaction between eui gene and WAMS cytoplasm of rice and improvement of panicle exsertion of MS line. SABRAO J 6:753–756

    Google Scholar 

  • Shimada Y, Fujioka S, Miyauchi N, Kushiro M, Takatsuto S, Nomura T, Yokota T, Kamiya Y, Bishop GJ, Yoshida S (2001) Brassinosteroid-6-oxidases from Arabidopsis and tomato catalyze multiple C-6 oxidations in brassinosteroid biosynthesis. Plant Physiol 126:770–779

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Shimada A, Ueguchi-Tanaka M, Sakamoto T, Fujioka S, Takatsuto S, Yoshida S, Sazuka T, Ashikari M, Matsuoka M (2006) The rice SPINDLY gene functions as a negative regulator of gibberellin signaling by controlling the suppressive function of the DELLA protein, SLR1, and modulating brassinosteroid synthesis. Plant J 48:390–402. doi:10.1111/j.1365-313X.2006.02875.x

    Article  CAS  PubMed  Google Scholar 

  • Song Y, You J, Xiong L (2009) Characterization of OsIAA1 gene, a member of rice Aux/IAA family involved in auxin and brassinosteroid hormone responses and plant morphogenesis. Plant Mol Biol 70:297–309. doi:10.1007/s11103-009-9474-1

    Article  CAS  PubMed  Google Scholar 

  • Spielmeyer W, Ellis MH, Chandler PM (2002) Semi-dwarf (sd-1), “green revolution” rice, contains a defective gibberellin 20-oxidase gene. Proc Nati Acad Sci USA 99:9043–9048. doi:10.1073/pnas.132266399

    Article  CAS  Google Scholar 

  • Suharsono U, Fujisawa Y, Kawasaki T, Iwasaki Y, Satoh H, Shimamoto K (2002) The heterotrimeric G protein alpha subunit acts upstream of the small GTPase Rac in disease resistance of rice. Proc Nati Acad Sci USA 99:13307–13312. doi:10.1073/pnas.192244099

    Article  CAS  Google Scholar 

  • Sui P, Jin J, Ye S, Mu C, Gao J, Feng H, Shen WH, Yu Y, Dong A (2012) H3K36 methylation is critical for brassinosteroid-regulated plant growth and development in rice. Plant J 70:340–347. doi:10.1111/j.1365-313X.2011.04873.x

    Article  CAS  PubMed  Google Scholar 

  • Sun Y, Fan XY, Cao DM, Tang W, He K, Zhu JY, He JX, Bai MY, Zhu S, Oh E (2010) Integration of brassinosteroid signal transduction with the transcription network for plant growth regulation in Arabidopsis. Dev Cell 19:765–777

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Sun H, Tao J, Hou M, Huang S, Chen S, Liang Z, Xie T, Wei Y, Xie X, Yoneyama K (2015) A strigolactone signal is required for adventitious root formation in rice. Ann Bot 115:1155–1162

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tabuchi M, Sugiyama K, Ishiyama K, Inoue E, Sato T, Takahashi H, Yamaya T (2005) Severe reduction in growth rate and grain filling of rice mutants lacking OsGS1;1, a cytosolic glutamine synthetase1;1. Plant J 42:641–651. doi:10.1111/j.1365-313X.2005.02406.x

    Article  CAS  PubMed  Google Scholar 

  • Tanabe S, Ashikari M, Fujioka S, Takatsuto S, Yoshida S, Yano M, Yoshimura A, Kitano H, Matsuoka M, Fujisawa Y, Kato H, Iwasaki Y (2005) A novel cytochrome P450 is implicated in brassinosteroid biosynthesis via the characterization of a rice dwarf mutant, dwarf11, with reduced seed length. Plant Cell 17:776–790. doi:10.1105/tpc.104.024950

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka K, Murata K, Yamazaki M, Onosato K, Miyao A, Hirochika H (2003) Three distinct rice cellulose synthase catalytic subunit genes required for cellulose synthesis in the secondary wall. Plant Physiol 133:73–83

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tanaka A, Nakagawa H, Tomita C, Shimatani Z, Ohtake M, Nomura T, Jiang CJ, Dubouzet JG, Kikuchi S, Sekimoto H, Yokota T, Asami T, Kamakura T, Mori M (2009) Brassinosteroid UPREGULATED1, encoding a helix–loop–helix protein, is a novel gene involved in brassinosteroid signaling and controls bending of the lamina joint in rice. Plant Physiol 151:669–680. doi:10.1104/pp.109.140806

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Thomas SG, Phillips AL, Hedden P (1999) Molecular cloning and functional expression of gibberellin 2-oxidases, multifunctional enzymes involved in gibberellin deactivation. Proc Nati Acad Sci USA 96:4698–4703

    Article  CAS  Google Scholar 

  • Tong H, Chu C (2012) Brassinosteroid signaling and application in rice. J Genet Genom 39:3–9. doi:10.1016/j.jgg.2011.12.001

    Article  CAS  Google Scholar 

  • Tong H, Jin Y, Liu W, Li F, Fang J, Yin Y, Qian Q, Zhu L, Chu C (2009) DWARF AND LOW-TILLERING, a new member of the GRAS family, plays positive roles in brassinosteroid signaling in rice. Plant J 58:803–816. doi:10.1111/j.1365-313X.2009.03825.x

    Article  CAS  PubMed  Google Scholar 

  • Toriba T, Harada K, Takamura A, Nakamura H, Ichikawa H, Suzaki T, Hirano HY (2007) Molecular characterization the YABBY gene family in Oryza sativa and expression analysis of OsYABBY1. Mol Genet Genom 277:457–468. doi:10.1007/s00438-006-0202-0

    Article  CAS  Google Scholar 

  • Ueguchi-Tanaka M, Fujisawa Y, Kobayashi M, Ashikari M, Iwasaki Y, Kitano H, Matsuoka M (2000) Rice dwarf mutant d1, which is defective in the alpha subunit of the heterotrimeric G protein, affects gibberellin signal transduction. Proc Nat Acad Sci USA 97:11638–11643. doi:10.1073/pnas.97.21.11638

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Ueguchi-Tanaka M, Ashikari M, Nakajima M, Itoh H, Katoh E, Kobayashi M, Chow TY, Hsing YI, Kitano H, Yamaguchi I, Matsuoka M (2005) GIBBERELLIN INSENSITIVE DWARF1 encodes a soluble receptor for gibberellin. Nature 437:693–698. doi:10.1038/nature04028

    Article  CAS  PubMed  Google Scholar 

  • Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N, Magome H, Kamiya Y, Shirasu K, Yoneyama K, Kyozuka J, Yamaguchi S (2008) Inhibition of shoot branching by new terpenoid plant hormones. Nature 455:195–200. doi:10.1038/nature07272

    Article  CAS  PubMed  Google Scholar 

  • van Zeijl A, Liu W, Xiao TT, Kohlen W, Yang WC, Bisseling T, Geurts R (2015) The strigolactone biosynthesis gene DWARF27 is co-opted in rhizobium symbiosis. BMC Plant Biol 15:260

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Vanneste S, Friml J (2009) Auxin: a trigger for change in plant development. Cell 136:1005–1016. doi:10.1016/j.cell.2009.03.001

    Article  CAS  PubMed  Google Scholar 

  • Vriet C, Russinova E, Reuzeau C (2012) Boosting crop yields with plant steroids. Plant Cell 24:842–857. doi:10.1105/tpc.111.094912

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Vriet C, Russinova E, Reuzeau C (2013) From squalene to brassinolide: the steroid metabolic and signaling pathways across the plant kingdom. Mol Plant 6:1738–1757

    Article  CAS  PubMed  Google Scholar 

  • Wang L, Xu YY, Ma QB, Li D, Xu ZH, Chong K (2006) Heterotrimeric G protein alpha subunit is involved in rice brassinosteroid response. Cell Res 16:916–922. doi:10.1038/sj.cr.7310111

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Ngwenyama N, Liu Y, Walker JC, Zhang S (2007) Stomatal development and patterning are regulated by environmentally responsive mitogen-activated protein kinases in Arabidopsis. Plant Cell 19:63–73. doi:10.1105/tpc.106.048298

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang L, Xu Y, Zhang C, Ma Q, Joo SH, Kim SK, Xu Z, Chong K (2008) OsLIC, a novel CCCH-type zinc finger protein with transcription activation, mediates rice architecture via brassinosteroids signaling. PLoS One 3:e3521

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wang ZY, Bai MY, Oh E, Zhu JY (2012) Brassinosteroid signaling network and regulation of photomorphogenesis. Annu Rev Genet 46:701–724. doi:10.1146/annurev-genet-102209-163450

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Deng D, Ding H, Xu X, Zhang R, Wang S, Bian Y, Yin Z, Chen Y (2013a) Gibberellin biosynthetic deficiency is responsible for maize dominant Dwarf11 (D11) mutant phenotype: physiological and transcriptomic evidence. PLoS One 8:e66466

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang Y, Sun S, Zhu W, Jia K, Yang H, Wang X (2013b) Strigolactone/MAX2-induced degradation of brassinosteroid transcriptional effector BES1 regulates shoot branching. Dev Cell 27:681–688. doi:10.1016/j.devcel.2013.11.010

    Article  CAS  PubMed  Google Scholar 

  • Wang Y, Chen L, Du Y, Yang Z, Condon AG, Hu Y-G (2014) Genetic effect of dwarfing gene Rht13 compared with Rht-D1b on plant height and some agronomic traits in common wheat (Triticum aestivum L.). Field Crops Res 162:39–47

    Article  Google Scholar 

  • Waters MT, Brewer PB, Bussell JD, Smith SM, Beveridge CA (2012) The Arabidopsis ortholog of rice DWARF27 acts upstream of MAX1 in the control of plant development by strigolactones. Plant Physiol 159:1073–1085. doi:10.1104/pp.112.196253

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wei XJ, Tang SQ, Shao GN, Chen ML, Hu YC, Hu PS (2013) Fine mapping and characterization of a novel dwarf and narrow-leaf mutant dnl1 in rice. Genet Mol Res 12:3845–3855. doi:10.4238/2013.September.23.2

    Article  CAS  PubMed  Google Scholar 

  • Wen C, Xi L, Gao B, Wang K, Lv S, Kou Y, Ma N, Zhao L (2015) Roles of DgD14 in regulation of shoot branching in chrysanthemum (Dendranthema grandiflorum ‘Jinba’). Plant Physiol Biochem 96:241–253

    Article  CAS  PubMed  Google Scholar 

  • Wu CY, Trieu A, Radhakrishnan P, Kwok SF, Harris S, Zhang K, Wang J, Wan J, Zhai H, Takatsuto S, Matsumoto S, Fujioka S, Feldmann KA, Pennell RI (2008) Brassinosteroids regulate grain filling in rice. Plant Cell 20:2130–2145. doi:10.1105/tpc.107.055087

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wu G, Wang X, Li X, Kamiya Y, Otegui MS, Chory J (2011) Methylation of a phosphatase specifies dephosphorylation and degradation of activated brassinosteroid receptors. Sci Signal 4:ra29

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wu Y, Fu Y, Zhao S, Gu P, Zhu Z, Sun C, Tan L (2016) Clustered primary branch1, a new allele of DWARF11, controls panicle architecture and seed size in rice. Plant Biotechnol J 14:377–386. doi:10.1111/pbi.12391

    Article  CAS  PubMed  Google Scholar 

  • Xie DX, Feys BF, James S, Nietorostro M, Turner JG (1998) COI1: an Arabidopsis gene required for jasmonate-regulated defense and fertility. Science (New York, N Y) 280:1091–1094

    Article  CAS  Google Scholar 

  • Xu J, Zha M, Li Y, Ding Y, Chen L, Ding C, Wang S (2015) The interaction between nitrogen availability and auxin, cytokinin, and strigolactone in the control of shoot branching in rice (Oryza sativa L.). Plant Cell Rep 34:1647–1662. doi:10.1007/s00299-015-1815-8

    Article  CAS  PubMed  Google Scholar 

  • Yaish MW, El-Kereamy A, Zhu T, Beatty PH, Good AG, Bi YM, Rothstein SJ (2010) The APETALA-2-like transcription factor OsAP2-39 controls key interactions between abscisic acid and gibberellin in rice. PLoS Genet 6:e1001098. doi:10.1371/journal.pgen.1001098

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yamaguchi S (2008) Gibberellin metabolism and its regulation. Annu Rev Plant Biol 59:225–251

    Article  CAS  PubMed  Google Scholar 

  • Yamamuro C, Ihara Y, Wu X, Noguchi T, Fujioka S, Takatsuto S, Ashikari M, Kitano H, Matsuoka M (2000) Loss of function of a rice brassinosteroid insensitive1 homolog prevents internode elongation and bending of the lamina joint. Plant Cell 12:1591–1606

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yan J, Zhang C, Gu M, Bai Z, Zhang W, Qi T, Cheng Z, Peng W, Luo H, Nan F, Wang Z, Xie D (2009) The Arabidopsis CORONATINE INSENSITIVE1 protein is a jasmonate receptor. Plant Cell 21:2220–2236. doi:10.1105/tpc.109.065730

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang DL, He SY (2012) Plant hormone jasmonate prioritizes defense over growth by interfering with gibberellin signaling cascade. Proc Nati Acad Sci USA 109:1192–1200

    Article  Google Scholar 

  • Yang RC, Zhang SB, Huang RH, Yang SL, Zhang QQ (2002) Breeding technology of eui-hybrids of rice. Agric Sci China 1:359–363

    Google Scholar 

  • Yang G, Nakamura H, Ichikawa H, Kitano H, Komatsu S (2006) OsBLE3, a brassinolide-enhanced gene, is involved in the growth of rice. Phytochemistry 67:1442–1454. doi:10.1016/j.phytochem.2006.05.026

    Article  CAS  PubMed  Google Scholar 

  • Yang C, Shen W, He Y, Tian Z, Li J (2016) OVATE family protein 8 positively mediates brassinosteroid signaling through interacting with the GSK3-like kinase in rice. PLoS Genet 12:e1006118

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Yasuno N, Yasui Y, Takamure I, Kato K (2007) Genetic interaction between 2 tillering genes, reduced culm number 1 (rcn1) and tillering dwarf gene d3, in rice. J Heredity 98:169–172. doi:10.1093/jhered/esl069

    Article  CAS  Google Scholar 

  • Yokota T (1997) The structure, biosynthesis and function of brassinosteroids. Trends Plant Sci 2:137–143

    Article  Google Scholar 

  • Yoshida S, Kameoka H, Tempo M, Akiyama K, Umehara M, Yamaguchi S, Hayashi H, Kyozuka J, Shirasu K (2012) The D3 F-box protein is a key component in host strigolactone responses essential for arbuscular mycorrhizal symbiosis. New Phytol 196:1208–1216

    Article  CAS  PubMed  Google Scholar 

  • Yu X, Li L, Zola J, Aluru M, Ye H, Foudree A, Guo H, Anderson S, Aluru S, Liu P (2011) A brassinosteroid transcriptional network revealed by genome-wide identification of BESI target genes in Arabidopsis thaliana. Plant J 65:634–646

    Article  CAS  PubMed  Google Scholar 

  • Yuan SJ, Wang T, Yin L, Zhao JG, Wan JM, Li XY (2013) Cloning and expression of gene responsible for high-tillering dwarf phenotype in Indica rice mutant gsor23. Rice Sci 20:320–328

    Article  Google Scholar 

  • Zazimalova E, Napier RM (2003) Points of regulation for auxin action. Plant Cell Rep 21:625–634. doi:10.1007/s00299-002-0562-9

    CAS  PubMed  Google Scholar 

  • Zentella R, Sui N, Barnhill B, Hsieh WP, Hu J, Shabanowitz J, Boyce M, Olszewski NE, Zhou P, Hunt DF (2017) The Arabidopsis O-fucosyltransferase SPINDLY activates nuclear growth repressor DELLA. Nat Chem Biol 13:479–485

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang LY, Bai MY, Wu J, Zhu JY, Wang H, Zhang Z, Wang W, Sun Y, Zhao J, Sun X, Yang H, Xu Y, Kim SH, Fujioka S, Lin WH, Chong K, Lu T, Wang ZY (2009) Antagonistic HLH/bHLH transcription factors mediate brassinosteroid regulation of cell elongation and plant development in rice and Arabidopsis. Plant Cell 21:3767–3780. doi:10.1105/tpc.109.070441

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang S, Li G, Fang J, Chen W, Jiang H, Zou J, Liu X, Zhao X, Li X, Chu C, Xie Q, Jiang X, Zhu L (2010) The interactions among DWARF10, auxin and cytokinin underlie lateral bud outgrowth in rice. J Integr Plant Biol 52:626–638. doi:10.1111/j.1744-7909.2010.00960.x

    CAS  PubMed  Google Scholar 

  • Zhang B, Tian F, Tan L, Xie D, Sun C (2011) Characterization of a novel high-tillering dwarf 3 mutant in rice. J Genet Genom 38:411–418. doi:10.1016/j.jgg.2011.08.002

    Article  CAS  Google Scholar 

  • Zhang C, Xu Y, Guo S, Zhu J, Huan Q, Liu H, Wang L, Luo G, Wang X, Chong K (2012) Dynamics of brassinosteroid response modulated by negative regulator LIC in rice. PLoS Genet 8:e1002686. doi:10.1371/journal.pgen.1002686

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang C, Bai MY, Chong K (2014a) Brassinosteroid-mediated regulation of agronomic traits in rice. Plant Cell Rep 33:683–696

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang J, Liu X, Li S, Cheng Z, Li C (2014b) The rice semi-dwarf mutant sd37, caused by a mutation in CYP96B4, plays an important role in the fine-tuning of plant growth. PLoS One 9:e88068. doi:10.1371/journal.pone.0088068

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zhang Y, van Dijk AD, Scaffidi A, Flematti GR, Hofmann M, Charnikhova T, Verstappen F, Hepworth J, van der Krol S, Leyser O, Smith SM, Zwanenburg B, Al-Babili S, Ruyter-Spira C, Bouwmeester HJ (2014c) Rice cytochrome P450 MAX1 homologs catalyze distinct steps in strigolactone biosynthesis. Nat Chem Biol 10:1028–1033. doi:10.1038/nchembio.1660

    Article  PubMed  CAS  Google Scholar 

  • Zhang X, Song H, Xiaoying C, Rongxiang F (2016) Small G protein as a novel component of the rice bmssinosteroid signal transduction. Mol Plant 9:1260–1271

    Article  CAS  PubMed  Google Scholar 

  • Zhou HL, He SJ, Cao YR, Chen T, Du BX, Chu CC, Zhang JS, Chen SY (2006) OsGLU1, a putative membrane-bound endo-1,4-beta-d-glucanase from rice, affects plant internode elongation. Plant Mol Biol 60:137–151. doi:10.1007/s11103-005-2972-x

    Article  CAS  PubMed  Google Scholar 

  • Zhu Y, Nomura T, Xu Y, Zhang Y, Peng Y, Mao B, Hanada A, Zhou H, Wang R, Li P, Zhu X, Mander LN, Kamiya Y, Yamaguchi S, He Z (2006) ELONGATED UPPERMOST INTERNODE encodes a cytochrome P450 monooxygenase that epoxidizes gibberellins in a novel deactivation reaction in rice. Plant Cell 18:442–456. doi:10.1105/tpc.105.038455

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zou J, Chen Z, Zhang S, Zhang W, Jiang G, Zhao X, Zhai W, Pan X, Zhu L (2005) Characterizations and fine mapping of a mutant gene for high tillering and dwarf in rice (Oryza sativa L.). Planta 222:604–612. doi:10.1007/s00425-005-0007-0

    Article  CAS  PubMed  Google Scholar 

  • Zou J, Zhang S, Zhang W, Li G, Chen Z, Zhai W, Zhao X, Pan X, Xie Q, Zhu L (2006) The rice high-tillering DWARF1 encoding an ortholog of Arabidopsis MAX3 is required for negative regulation of the outgrowth of axillary buds. Plant J 48:687–698. doi:10.1111/j.1365-313X.2006.02916.x

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

Special thanks should go to Dr. Alice Hayward who has put considerable time and effort on improving the clarity and accuracy of this text. This work was supported by a Major Research Project of CAAS Science and the Technology Innovation Program, and by the National Natural Science Foundation of China (Grant numbers: 31400243 and 31201152), and by the Natural Science Foundation of Hubei Province (Grant number: 2013CFB423).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Donghui Fu or Gang Wu.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 14 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, F., Wang, P., Zhang, X. et al. The genetic and molecular basis of crop height based on a rice model. Planta 247, 1–26 (2018). https://doi.org/10.1007/s00425-017-2798-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-017-2798-1

Keywords

Navigation