Skip to main content
Log in

The role of strigolactones during plant interactions with the pathogenic fungus Fusarium oxysporum

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

Strigolactones (SLs) do not influence spore germination or hyphal growth of Fusarium oxysporum. Mutant studies revealed no role for SLs but a role for ethylene signalling in defence against this pathogen in pea.

Strigolactones (SLs) play important roles both inside the plant as a hormone and outside the plant as a rhizosphere signal in interactions with mycorrhizal fungi and parasitic weeds. What is less well understood is any potential role SLs may play in interactions with disease causing microbes such as pathogenic fungi. In this paper we investigate the influence of SLs on the hemibiotrophic pathogen Fusarium oxysporum f.sp. pisi both directly via their effects on fungal growth and inside the plant through the use of a mutant deficient in SL. Given that various stereoisomers of synthetic and naturally occuring SLs can display different biological activities, we used (+)-GR24, (−)-GR24 and the naturally occurring SL, (+)-strigol, as well as a racemic mixture of 5-deoxystrigol. As a positive control, we examined the influence of a plant mutant with altered ethylene signalling, ein2, on disease development. We found no evidence that SLs influence spore germination or hyphal growth of Fusarium oxysporum and that, while ethylene signalling influences pea susceptibility to this pathogen, SLs do not.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

AM:

Arbuscular mycorrhizal

SL:

Strigolactone

References

  • Akiyama K, Matsuzaki K, Hayashi H (2005) Plant sesquiterpenes induce hyphal branching in arbuscular mycorrhizal fungi. Nature 435:824–827

    Article  CAS  PubMed  Google Scholar 

  • Akiyama K, Ogasawara S, Ito S, Hayashi H (2010) Structural requirements of strigolactones for hyphal branching in AM fungi. Plant Cell Physiol 51:1104–1117

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Akiyoshi D, Morris R, Hinz R, Mischke B, Kosuge T, Garfinkel D, Gordon M, Nester E (1983) Cytokinin/auxin balance in crown gall tumors is regulated by specific loci in the T-DNA. Proc Natl Acad Sci USA 80:407–411

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Andersen JP, Singh KB (2011) Interactions of Arabidopsis and M. trunculata with the same pathogens differ in dependence on ethylene and ethylene response factors. Landes Biosci 6:551–552

    Google Scholar 

  • Antolin-Llovera Petutsching EK, Reid MK, Lipka V, Nürnberger T, Robatzek S, Parniske M (2014) Knowing your friends and foes-plant receptor-like kinases as initiators of symbiosis or defense. New Phytol 204:791–802

    Article  CAS  PubMed  Google Scholar 

  • Artuso E, Ghibaudi E, Lace B, Marabello D, Vinciguerra D, Lombardi C, Koltai H, Kapulnik Y, Novero M, Occhiato EG, Scarpi D, Parisotto S, Deagostino A, Venturello P, Mayzlish-Gati E, Bier A, Prandi C (2015) Stereochemical assignment of strigolactone analogues confirms their selective biological activity. J Nat Prod 78:2624–2633. doi:10.1021/acs.jnatprod.5b00557

    Article  CAS  PubMed  Google Scholar 

  • Besserer A, Puech-Pagès V, Kiefer P, Gomez-Roldan V, Jauneau A, Roy S, Portais J-C, Roux C, Bécard G, Séjalon-Delmas N (2006) Strigolactones stimulate arbuscular mycorrhizal fungi by activating mitochondria. PLoS Biol 4:e226

    Article  PubMed  PubMed Central  Google Scholar 

  • Besserer A, Bécard G, Jauneau A, Roux C, Séjalon-Delmas N (2008) GR24, a synthetic analog of strigolactones, stimulates the mitosis and growth of the arbuscular mycorrhizal fungus Gigaspora rosea by boosting its energy metabolism. Plant Physiol 148:402–413

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Beveridge CA, Symons GM, Murfet IC, Ross JJ, Rameau C (1997) The rms1 mutant of pea has elevated indole-3-acetic acid levels and reduced root-sap zeatin riboside content but increased branching controlled by graft-transmissible signal(s). Plant Physiol 115:1251–1258

    CAS  PubMed Central  Google Scholar 

  • Blake SN, Barry KM, Gill WM, Reid JB, Foo E (2015) The role of strigolactones and ethylene in disease caused by Pythium irregulare. Mol Plant Pathol. doi:10.111/mpp.12320

    PubMed  Google Scholar 

  • Bromhead LJ, Visser J, McErlean CSP (2014) Enantioselective synthesis of the strigolactone mimic (+)-GR24. J Org Chem 79:1516

    Article  CAS  PubMed  Google Scholar 

  • Bromhead LJ, Smith JA, McErlean CSP (2015) Chemistry of the synthetic strigolactone mimic GR24. Aus J Chem 68:1221

    CAS  Google Scholar 

  • Buxton EW (1957a) Some effects of pea root exudates on physiologic races of Fusarium oxysporum Fr. f. pisi (Linf.) Snyder and Hansen. Trans Brit Mycol Soc 40:145–154

    Article  CAS  Google Scholar 

  • Buxton EW (1957b) Differential rhizpsphere effects of three pea cultivars on physiologic races of Fusarium oxysporum f. pisi. Trans Brit Mycol Soc 40:305–317

    Article  Google Scholar 

  • Castillejo MA, Bani M, Rubiales D (2015) Understanding pea resistance mechanisms in response to Fusarium oxysporum through proteomic analysis. Phytochemistry 115:44–58

    Article  CAS  PubMed  Google Scholar 

  • Challis RJ, Hepworth J, Mouchel C, Waites R, Leyser O (2013) A role for MORE AXILLARY GROWTH1 (MAX1) in evolutionary diversity in strigolactone signalling upstream of MAX2. Plant Physiol 161:1885–1902

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen X, Steed A, Travella S, Keller B, Nicholson P (2009) Fusarium graminearum exploits ethylene signalling to colonize dicotyledonous and monocotyledonous plants. New Phytol 182:975–983

    Article  CAS  PubMed  Google Scholar 

  • Coddington A, Matthews PM, Cullis C, Smith KH (1987) Restriction digest patterns of total DNA from different races of Fusarium oxysporum f. sp. pisi: an improved method for race classification. J Phytopathol 118:9–20

    Article  CAS  Google Scholar 

  • Cook CE, Whichard LP, Turner B, Wall ME, Egley GH (1966) Germination of Witchweed (Striga lutea Lour.): isolation and properties of a potent stimulant. Science 154:1189–1190

    Article  CAS  PubMed  Google Scholar 

  • Cook CE, Whichard LP, Wall ME, Egley GH, Coggon P, Luhan PA, McPhail AT (1972) Germination stimulants. II. The structure of strigol—a potent seed germination stimulant for witchweed (Striga lutea Lour.). J Am Chem Soc 94:6198–6199

    Article  CAS  Google Scholar 

  • Delaux PM, Nanda AK, Mathé C, Sejalon-Delmas N, Dunand C (2012) Molecular and biochemical apsects of plant terrestrialization. Perspect Plant Ecol Evol Syst 14:49–59

    Article  Google Scholar 

  • Denancé N, Sánchez-Vallet A, Goffner D, Molina A (2013) Disease resistance or growth: the role of plant hormones in balancing immune responses and fitness costs. Front Plant Sci 4:1–12

    Article  Google Scholar 

  • Derksen H, Rampitsch C, Daayf F (2013) Signaling cross-talk in plant disease resistance. Plant Sci 207:79–87

    Article  CAS  PubMed  Google Scholar 

  • Dor E, Joel DM, Kapulnik Y, Koltai H, Hershenhorn J (2011) The synthetic strigolactone GR24 influences the growth pattern of phytopathogenic fungi. Planta 234:419–427

    Article  CAS  PubMed  Google Scholar 

  • Enzer Y, Khalaila I, Mayzlish-Gati E, Kapulnik Y, Koltai H (2013) The strigolactone analog GR24 stability and biological activity under abiotic conditions and the effect of a derivative of cellulose on its stability. J Plant Mol Biol Biotechnol 4(1):12

    Google Scholar 

  • Evangelisti E, Rey T, Schornack S (2014) Cross-interference of plant development and plant–microbe interactions. Curr Opin Plant Biol 20:118–126

    Article  CAS  PubMed  Google Scholar 

  • Flematti GR, Scaffidi A, Waters MT, Smith SM (2015) Stereospecificty in strigolactone biosynthesis and perception. Planta (in press)

  • Foo E, Davies NW (2011) Strigolactones promote nodulation in pea. Planta 234:1073–1081

    Article  CAS  PubMed  Google Scholar 

  • Foo E, Reid JB (2013) Strigolactones: new physiological roles for an ancient signal. J Plant Growth Reg 32:429–442

    Article  CAS  Google Scholar 

  • Foo E, Yoneyama K, Hugill CJ, Quittenden LJ, Reid JB (2013) Strigolactones and the regulation of pea symbioses in response to nitrate and phosphate deficiency. Mol Plant 6:76–87

    Article  CAS  PubMed  Google Scholar 

  • Geraats BPJ, Bakker PAHM, Lawrnce CB, Achuo EA, Hofte M, van Loon LC (2003) Ethylene-insensitive tobacco shows differentially atered susceptibility to different pathogens. Phytopathology 93:813–821

    Article  PubMed  Google Scholar 

  • Gomez-Roldan V, Fermas S, Brewer PB, Puech-Pagès V, Dun EA, Pillot J-P, Letisse F, Matusova R, Danoun S, Portais J-C, Bouwmeester H, Bécard G, Beveridge CA, Rameau C, Rochange SF (2008) Strigolactone inhibition of shoot branching. Nature 455:189–194

    Article  CAS  PubMed  Google Scholar 

  • Gourion B, Berrabah F, Ratet P, Stacey G (2015) Rhizobium–legume symbioses: the crucial role of plant immunity. Trends Plant Sci 20:186–194

    Article  CAS  PubMed  Google Scholar 

  • Hayachi M, Parniske M (2014) Symbiosis and pathogenesis: what determines the difference? Curr Opin Plant Biol 20:v–vi. doi:10.1016/j.pbi.2014.07.008

    Google Scholar 

  • Lachia M, Wolf HC, De Mesmaeker A (2014) Synthesis of strigolactones analogues by intramolecular [2 + 2] cycloaddition of ketene-iminium salts to olefins and their activity on Orobanche cumana seeds. Bioorg Med Chem Lett 24:2123–2128

    Article  CAS  PubMed  Google Scholar 

  • Lachia M, Wolf HC, Jung PJ, Screpanti C, De Mesmaeker A (2015) Strigolactam: new potent strigolactone analogues for the germination of Orobanche cumana. Bioorg Med Chem Lett 25:2184–2188

    Article  CAS  PubMed  Google Scholar 

  • Leslie JF, Summerell BA, Bullock S (2006) The Fusarium laboratory manual. Blackwell, Oxford

    Book  Google Scholar 

  • Lin Z, Zhong S, Grierson D (2009) Recent advances in ethylene research. J Exp Bot 60:3311–3336

    Article  CAS  PubMed  Google Scholar 

  • Matusova R, Rani K, Verstappen FW, Franssen MC, Beale MH, Bouwmeester HJ (2005) The strigolactone germination stimulants of the plant-parasitic Striga and Orobanche spp. are derived from the carotenoid pathway. Plant Physiol 139:920–934

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Merchante C, Alonso JM, Stepanova AN (2013) Ethylene signaling: simple ligand, complex regulation. Curr Opin Plant Biol 16:554–560

    Article  CAS  PubMed  Google Scholar 

  • Onate-Sanchez L, Anderson JP, Young J, Singh KB (2007) AtERF14, a member of the ERF famuly of transcription factors, plays a nonredundant role in plant defense. Am Soc Plant Biol 143:400–409

    CAS  Google Scholar 

  • Piisila M, Keceli MA, Brader G, Jakobson L, Jöesaar I, Sipari N, Kollist GH, Palva ET, Kariola T (2015) The F-box MAX2 contributes to resistance to bacterial phytopathogens in Arabidopsis thaliana. BMC Plant Pathol 15:53

    Google Scholar 

  • Qiao H, Shen Z, Huang SS, Schmitz RJ, Urich MA, Briggs SP, Ecker JR (2012) Processing and subcellular trafficking of ER-tethered EIN2 control response to ethylene gas. Science 338:390–393

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reizelman A, Scheren M, Nefkens GHL, Zwanenburg B (2000) Synthesis of all eight stereoisomers of the germination stimulant strigol. Synthesis 13:1944

    Article  Google Scholar 

  • Robert-Seilaniantz A, Grant M, Jones JDG (2011) Hormone crosstalk in plant disease and defence: more than just jasmonate-salicylate antagonism. Annu Rev Phytopathol 49:317–343

    Article  CAS  PubMed  Google Scholar 

  • Sabbagh SK (2012) Effect of GR24, a synthetic analog of strigolactones, on physiological and morphological activities of Ustilago maydis. Iran J Plant Pathol 48:291–302

    Google Scholar 

  • Scaffidi A, Waters MT, Sun YK, Skelton BW, Dixon KW, Ghisalberti EL, Flematti GR, Smith SM (2014) Strigolactone hormones and their stereoisomers signal through two related receptor proteins to induce different physiological responses in Arabidopsis. Plant Physiol 165:1221–1232

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Scheffknecht S, Mammerler R, Steinkellner S, Vierheilig H (2006) Root exudates of mycorrhizal tomato plants exhibit a different effect on microconidia germination of Fusarium oxysporum f. sp. lycopersici than root exudates from non-mycorrhizal tomato plants. Mycorrhiza 16:365–370

    Article  CAS  PubMed  Google Scholar 

  • Schroeder KL, Martin FN, de Cock AWAM, Lèvesque CA, Okubara PA, Paulitz TC, Spies CFJ (2013) Molecular detection and quantification of Pythium species: evolving taxonomy, new tools, and challenges. Plant Dis 97:4–17

    Article  CAS  Google Scholar 

  • Smith SM, Li J (2014) Signalling and responses to strigolactones and karrikins. Curr Opin Plant Biol 21:23–29

    Article  CAS  PubMed  Google Scholar 

  • Soto MJ, Fernandez-Aparicio M, Castellanos-Morales V, Garcia-Garrido JA, Delgado MJ, Vierheilig H (2010) First indications for the involvement of strigolactones on nodule formation in alfalfa (Medicago sativa). Soil Biol Biochem 42:383–385

    Article  CAS  Google Scholar 

  • Steinkellner S, Lendzemo V, Langer I, Khaosad T, Schweiger P, Toussaint J-P, Vierheilig H (2007) Flavonoids and strigolactone in root exudates as signals in symbiotic and pathogenic plant-fungus interactions. Molecules 12:1290–1306

    Article  CAS  PubMed  Google Scholar 

  • Stes E, Depuydt S, De Keyser A, Matthys C, Audenaert K, Yoneyama K, Werbrouck S, Goormachtig S, Vereecke D (2015) Strigolactones as an auxillary hormonal defense against leafy gall syndrome in Arabidopsis thaliana. J Exp Bot 66:5123–5134. doi:10.1093/jxb/erv309

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Takahashi N, Kitamura H, Kawarada A, Seta Y, Takai M, Tamura S, Sumiki Y (1955) Biochemical studies on “Bakanae” fungus: part XXXIV. Isolation of gibberellins and their properties part XXXV. Relation between gibberellins, A1, A2 and gibberellic acid. J Agric Chem Soc Japan 19:267–281

    Google Scholar 

  • Thuring JFJF, Nefkens GHL, Zwanenburg B (1997) Asymmetric synthesis of all stereoisomers of the strigol analogue GR24. Dependence of absolute configuration on stimulatory activity of Striga hermonthica and Orobanche crenata seed germination. J Agric Food Chem 45:2278–2283

    Article  CAS  Google Scholar 

  • Torres-Vera R, García JM, Pozo MJ, López-Ráez JA (2014) Do strigolactones contribute to plant defence? Mol Plant Pathol 15:211–216

    Article  CAS  PubMed  Google Scholar 

  • Urquhart S, Foo E, Reid JB (2014) The role of strigolactones in photomorphogenesis of pea is limited to adventitious rooting. Physiol Plant 153:392–402

    Article  PubMed  Google Scholar 

  • van der Ent S, Pieterse CMJ (2012) Ethylene: multi-tasker in plant-attacker interactions. Annu Plant Rev 44:343–377

    Google Scholar 

  • van Loon LC, Geraats BPJ, Huub JM, Linthorst HJM (2006) Ethylene as a modulator of disease resistance in plants. Trends Plant Sci 11:184–191

    Article  PubMed  Google Scholar 

  • Weller JL, Foo E, Hecht VFG, Ridge S, Vander Schoor JK, Reid JB (2015) Ethylene signalling influences light-regulated development in pea. Plant Physiol 169:115–124. doi:10.1104/pp.15.00164

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • White TJ, Bruns T, Lee S, Taylor J (1990) Amplification an direct sequencing of fungal ribosomal RNA genes for phylogenetics. In: Innis MA, Gelfand DH, Snisky JJ, White TJ (eds) PCR protocols: a guide to methods and applications. Academic Press, New York, pp 315–322

    Google Scholar 

Download references

Acknowledgments

We wish to thank Dr. Erin McAdam, Dr. Alison Dann, Shelley Urquhart, Claire Frappell, Nikita Lovel, Tracey Winterbottom and Michelle Lang for technical assistance. We thank Dr. Jim Weller (UTAS) for ein2 seed, Dr. Karen Barry (TIA, Tasmania) for useful discussions, Dr. Chris McErlean (University of Sydney) for the kind gift of (+)-GR24 and (−)-GR24 and Steven Abel for the synthesis of the (rac)-5-deoxystrigol.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eloise Foo.

Additional information

A contribution to the special issue on Strigolactones.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Foo, E., Blake, S.N., Fisher, B.J. et al. The role of strigolactones during plant interactions with the pathogenic fungus Fusarium oxysporum . Planta 243, 1387–1396 (2016). https://doi.org/10.1007/s00425-015-2449-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-015-2449-3

Keywords

Navigation