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Abstract Nitric oxide (NO) is a signaling molecule that

mediates many plant responses to biotic and abiotic stres-

ses, including salt stress. Interestingly, salinity increases

NO production selectively in mesophyll cells of sorghum

leaves, where photosynthetic C4 phosphoenolpyruvate

carboxylase (C4 PEPCase) is located. PEPCase is regulated

by a phosphoenolpyruvate carboxylase-kinase (PEPCase-

k), which levels are greatly enhanced by salinity in sor-

ghum. This work investigated whether NO is involved in

this effect. NO donors (SNP, SNAP), the inhibitor of NO

synthesis NNA, and the NO scavenger cPTIO were used

for long- and short-term treatments. Long-term treatments

had multifaceted consequences on both PPCK gene

expression and PEPCase-k activity, and they also

decreased photosynthetic gas-exchange parameters and

plant growth. Nonetheless, it could be observed that SNP

increased PEPCase-k activity, resembling salinity effect.

Short-term treatments with NO donors, which did not

change photosynthetic gas-exchange parameters and PPCK

gene expression, increased PEPCase-k activity both in

illuminated leaves and in leaves kept at dark. At least in

part, these effects were independent on protein synthesis.

PEPCase-k activity was not decreased by short-term

treatment with cycloheximide in NaCl-treated plants; on

the contrary, it was decreased by cPTIO. In summary, NO

donors mimicked salt effect on PEPCase-k activity, and

scavenging of NO abolished it. Collectively, these results

indicate that NO is involved in the complex control of

PEPCase-k activity, and it may mediate some of the plant

responses to salinity.
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Abbreviations

CDPK Ca2?-dependent protein kinase

cPTIO 2-(4-carboxyphenyl)-4,4,5,5-

tetramethylimidazoline-1-oxyl-3-oxide

NNA N-nitro-L-arginine

PA Phosphatidic acid

PEPCase Phosphoenolpyruvate carboxylase

PEPCase-k Phosphoenolpyruvate carboxylase-kinase

PLD Phospholipase D

qPCR Quantitative PCR

SNAP S-nitroso-N-acetyl-1,1-penicillamine

SNP Sodium nitroprusside

Introduction

The relevance of nitric oxide (NO) as a signaling molecule

in plants is fully acknowledged at present (Fewson and
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Nicholas 1960; Leshem 1996; Delledonne et al. 1998;

Lamattina et al. 2003). NO has a dual function in both

regulating growth and development and mediating plant

responses to diverse biotic and abiotic environmental sig-

nals. As a consequence, this molecule has been implied in

processes as diverse as seed germination, root growth,

respiration, stomatal closure, flowering, cell death, and

responses to biotic and abiotic stresses (Durner et al. 1998;

Lamattina et al. 2003; Wendehenne et al. 2004; Besson-

Bard et al. 2008).

The origin of NO in plants is still controversial and it

appears that NO does not come from a single source (del

Rı́o et al. 2004). Reduction of nitrite produces NO via

enzymatic and nonenzymatic routes. The first pathway

involves cytosolic nitrate reductase (Yamasaki and Saki-

hama 2000), a root-specific plasma-membrane nitrite

reductase (Stohr et al. 2001), and reduction of nitrite by

electrons from the mitochondrial electron transport chain

(Planchet et al. 2005). NO can be produced nonenzymati-

cally by chemical reduction of nitrite at acidic pH in the

apoplasm (Bethke et al. 2004). In addition, NO is synthe-

sized from L-Arg by a nitric oxide synthase-like activity

(Barroso et al. 1999; Corpas et al. 2006; Tian et al. 2007).

Other oxidative pathways use polyamine and hydroxyl-

amine as substrates for NO production (Gupta et al. 2011).

There are numerous reports showing that NO increases

plant tolerance to salt stress. The beneficial effects of NO

have been attributed to different processes. By activating

H?-translocating ATPases of the plasma membrane and

tonoplast, NO has been reported to regulate K? to Na?

ratio, contributing to maintain ion homeostasis (Uchida

et al. 2002; Shi et al. 2007; Chen et al. 2010). Other

valuable effects of NO under salinity depend on the

induction of enzymes involved in detoxification (such as

antioxidant enzymes) or in the synthesis of protective

metabolites (such as proline) (Zhao et al. 2004, 2007;

Zhang et al. 2006; Tanou et al. 2009; Bai et al. 2011; Wu

et al. 2011; Fan et al. 2012; Keyster et al. 2012).

In addition, NO can enhance salt tolerance by inducing

stomatal closure (Garcı́a-Mata and Lamattina 2001; Li et al.

2006). NO is a signaling component in abscisic acid (ABA)-

induced stomatal closure (Garcı́a-Mata and Lamattina 2002;

Neill et al. 2002; Garcia-Mata et al. 2003). ABA promotes

NO formation through the reaction of nitrate reductase in

guard cells (Desikan et al. 2002). Downstream of NO during

stomatal closure are NO-stimulated mitogen activated pro-

tein kinase (MAPK) activity and cGMP production (Soko-

lovski et al. 2005; Neill et al. 2008), and phospholipase C

(PLC)- and phospholipase D (PLD)-derived phosphatidic

acid (PA) (Distéfano et al. 2008).

It is known that C4 plants are able to maintain relatively

high rates of CO2 fixation even when their stomata are in

part closed, and C4 plants perform better than C3 plants

under salt stress. Phosphoenolpyruvate carboxylase (PEP-

Case: EC 4.1.1.31), the enzyme responsible for primary

carboxylation in C4 photosynthesis, is phosphorylated by a

light-dependent phosphoenolpyruvate carboxylase-kinase

(PEPCase-k). Salinity greatly increased PEPCase-k activity

in salt-treated sorghum plants (Echevarrı́a et al. 2001;

Garcı́a-Mauriño et al. 2003). Several experimental evi-

dences indicated that this effect could be related to a

decreased rate of protein degradation, and that ABA, which

increases in response to salinity, was responsible for it

(Monreal et al. 2007a). Further investigation on salinity

effects on PEPCase-k activity showed that 172 mM salt

treatment decreased the rate of PEPCase-k degradation;

meanwhile at higher concentration (258 mM) it increased

PPCK gene expression and/or mRNA stability (Monreal

et al. 2013). It has been proposed that phosphorylation of

the protein by a calcium-dependent protein kinase (CDPK)

could be modulating the turnover of PEPCase-k under salt

stress. Both by ABA-dependent and independent mecha-

nisms, NO could be involved in the effects of salinity on

PEPCase-k activity and PPCK gene expression.

This work was aimed to investigate the effect of NO on

PEPCase-k activity and PPCK gene expression, and to

evaluate the involvement of NO as a mediator of some of

the mechanisms, triggered by salt, that impact on PEPCase-

k activity of sorghum leaves.

Materials and methods

Plant material and growth conditions

Sorghum plants (Sorghum bicolor L., Rhône-Poulenc,

Seville, Spain) were grown hydroponically in 12 h light to

dark cycles (25 �C, 60 % relative humidity and 20 �C,

70 % relative humidity for each photoperiod, respectively).

Light intensity was 350 lmol m-2 s-1 PAR. Seeds were

placed in moist vermiculite and seedlings were transferred

to a hydroponic culture system 7 days after sowing. Plants

were grown in 1 l polyethylene pots filled with a contin-

uously aerated nitrate-type nutrient solution (Hewitt 1966).

Plant material used in the experiments was obtained from

plants 3–4 weeks after sowing.

Experimental treatments

Plants were acclimated to salt by increasing weekly NaCl

concentration (43, 86, 172 mM final concentration) in the

culture medium. Plants were grown with 172 mM NaCl for

10 days.

Low Fe treatment consisted in reducing Fe in the culture

medium from 100 lM (control) to 10 lM NaFe-EDTA

(low Fe). The NO levels were increased with the NO
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donors SNAP (S-nitroso-N-acetyl-1,1-penicillamine) and

SNP (sodium nitroprusside). Decreased NO levels were

accomplished with the NO scavenger cPTIO (2-(4-car-

boxyphenyl)-4,4,5,5-tetramethylimidazoline-1-oxyl-3-

oxide) and the inhibitor of NO synthesis NNA (N-nitro-L-

arginine). Long-term experiments were performed by

addition of SNP and NNA to the culture medium 1 week

after the plants had been transferred to polyethylene pots,

and the treatment was prolonged for 10 days. Short-term

treatments with SNAP, SNP, cPTIO and NNA consisted

of overnight exposure of excised leaves to the

pharmaceuticals.

Experiments were carried out with excised, fully

expanded youngest leaves, which were transferred to a

3 ml cuvette containing 0.01 M Tris–HCl buffer, pH 8, and

the indicated pharmaceuticals. When the leaves had been

subjected to overnight treatment, they were provided with

fresh chemicals next morning. Leaves were illuminated

(750 lmol m-2 s-1 PAR) or kept in the dark for 2–3 h,

prior to the preparation of enzyme extracts.

NO measurement

Fully expanded youngest leaves of control and 172 mM

NaCl-treated plants (10 days) were cut and vacuum loaded

with 20 mM Hepes (pH 7.5) containing 15 lM of the NO

detection probe 4-5-diaminofluorescein-FM diacetate

(DAF-FM DA). The leaves were then thoroughly washed

to remove the excess of probe. Transversal sections were

hand cut with a razorblade and mounted for microscopy.

Fluorescent images were obtained by confocal laser

microscopy using a Nikon C1 Plus with Eclipse Ti Inverted

Microscope. The green fluorescent was quantified as a

pixel intensity of a fixed area from mesophyll cells using

ImageJ analysis software (NIH, Bethesda, MD, USA). The

fluorescence values are represented as relative units (RU)

with respect to the control treatments and are expressed as

mean ± SE. 80–120 mesophyll cells from at least three

different plants were quantified.

Enzyme extraction and analysis

Protein extracts were obtained by grinding 0.2 g fresh

weight of leaf tissue in 1 ml of extraction buffer contain-

ing: 0.1 M Tris–HCl pH 7.5, 20 % (by vol.) glycerol,

1 mM EDTA, 10 mM MgCl2 and 14 mM b-mercap-

toethanol. The homogenate was centrifuged at 15,000g for

2 min and the supernatant was filtered through Sephadex

G-25.

Determination of PEPCase activity, malate test, in vitro

phosphorylation assay, and SDS-PAGE has been described

previously (Echevarrı́a et al. 1994). PEPCase activity was

measured spectrophotometrically at optimal pH 8.0 using

the NAD-MDH-coupled assay at 2.5 mM PEP. A single

enzyme unit is defined as the amount of PEPCase that

catalyzes the carboxylation of 1 lmol of phosphoenolpyr-

uvate per minute at pH 8 and 30 �C.

The in vitro PEPCase-k activity of sorghum leaves and

leaf disks was measured in aliquots of desalted protein

extracts (10 lg) that were incubated in a reaction medium

containing 100 mM Tris–HCl, pH 7.5, 20 % (by vol.)

glycerol, 5 mM MgCl2, 0.25 mM P1P5-di(adenosine-50)-
pentaphosphate (adenylate kinase inhibitor), 1 mM EGTA

and 0.2 units of nonphosphorylated sorghum PEPCase. The

phosphorylation reaction was initiated by the addition of

37 kBq of [c-32P]ATP (15 TBq mmol-1) and incubated at

30 �C for 1 h. The reaction was stopped by boiling the

samples for 3 min at 90 �C in the presence of dissociation

buffer (100 mM Tris–HCl, pH 8, 25 % glycerol, 1 % SDS,

10 % b-mercaptoethanol, and 0.05 % bromophenol blue

(all by vol.). The denatured proteins were separated by

SDS-PAGE in a Miniprotean electrophoresis cell (Bio-

Rad) and stained with Coomassie Brilliant Blue R-250. The

gel was analyzed with a phosphor imager (Fuji FLA-5100;

Fuji, Tokyo).

Protein quantification

Protein concentrations were determined using the method

of Bradford (1976) with BSA as the standard.

RNA extraction and cDNA synthesis

Total RNA was extracted from 100 mg of frozen, pow-

dered leaves using the RNeasy Plant Mini kit (Qiagen).

Extracted nucleic acids were DNase treated to wipe out

genomic DNA. RNA concentrations were determined

using a QubitTM Fluorometer (Invitrogen). Reverse tran-

scription reactions were performed using 1 lg of purified

total RNA, 1 lL ImProm-IITM Reverse Transcriptase

(Promega) and a reaction buffer containing 0.5 mM dNTP,

6 mM MgCl2, 20 U recombinant RNasin� ribonuclease

inhibitor and 0.5 lg oligo(dt)15.

qPCR experiments

Quantitative PCR reactions (qPCR) were performed in a

final volume of 20 lL consisting of 1 lL of the cDNA,

15 lM of the specific primers (see Supplementary Table

S1), and 10 lL of SensiFAST SYBR No-ROX kit (Roche).

PCR was conducted on the MiniOpticonTM Real-Time

PCR Detection System (Biorad), and the threshold cycles

(Ct) were determined using Opticon MonitorTM analysis

software for all treatments. To normalize the obtained

values, 18S RNA was used as internal control in each

sample.
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Gas exchange measurements

Photosynthetic light response curves (from 0 to

1,200 lmol m-2 s-1 PAR) were determined on adult

leaves following the procedure of Rubio-Casal et al.

(2010). Measurements were made using an LCpro ? por-

table photosynthesis analyzer (open system) connected to a

broad leaf chamber (ADC BioScientific Ltd., Hertford-

shire, UK) with an integrated LED light source. Each curve

typically involved 25–30 min. Net photosynthetic rate

(A) and stomatal conductance (gs) were determined at a

CO2 concentration of 460 ppm, ambient relative humidity

and using standard formulas (Von Caemmerer and Farqu-

har 1981). Data were fitted to the rectangular hyperbolic

model (Chartier and Prioul 1976) using the program Sig-

maPlot 10.0 (Systat Software Inc., San José, CA, USA). In

this model, the upper asymptote is the light-saturated

photosynthetic rate (A).

Statistical analysis

The statistical analysis of the results was performed using

statistical software (SigmaStat, Systat Software Inc). Statis-

tical differences between groups were tested by t test. The

means are considered to be significantly different at P \ 0.05.

Results

Salinity increases NO production in sorghum leaves

Sorghum plants display Kranz anatomy, with two photo-

synthetic tissue types (mesophyll and bundle sheath) arran-

ged in concentric circles around veins. Photosynthesis is

initiated by HCO�3 fixation by C4 PEPCase in mesophyll

cells. Salinity (172 mM) increased NO production in leaves

of sorghum plants (Fig. 1). Interestingly, NO was preferen-

tially accumulated in mesophyll cells (see Fig. 1, inset).

NO impacts on PEPCase-k activity

The contribution of nitric oxide to the effects caused by

salinity in sorghum leaves was evaluated with pharmaco-

logical tools. Long-term treatments (10 days) with either

the NO donor sodium nitroprusside (SNP) or the inhibitor

of NO synthesis N-nitro-L-arginine (NNA) decreased plant

growth (Fig. 2a; Table 1) and photosynthetic gas-exchange

parameters (Fig. 2b). Besides of these wide detrimental

effects, long-term treatments with either SNP or NNA

increased PEPCase-k activity in the light (Fig. 3a). On the

other hand, the more noteworthy effect was the marked

enhancement of PEPCase-k activity caused by SNP in the

dark; meanwhile, this activity was totally suppressed by

NNA. Although dark PEPCase-k activity was very low in

control plants, and, for this reason, the depressing effect of

NNA was of little extent, it was consistently shown in

following experiments. Neither SNP nor NNA increased

PEPCase activity, but moderately decreased it (Fig. 3b).

PEPCase activity, measured at pH 8, is the same with

independence the leaves are illuminated or not.

Three putative PPCK genes have been reported in sor-

ghum (Shenton et al. 2006; Paterson et al. 2009). PPCK1

gene product is the PEPCase-k isoenzyme responsible for

the phosphorylation of the C4 photosynthetic PEPCase, and

its expression is triggered by light, unlike PPCK2 or

PPCK3 (Monreal et al. 2013). The expression of PPCK

genes in sorghum leaves was analyzed by quantitative RT-

PCR (qPCR). Both SNP and NNA treatments increased

PPCK1 expression in the light; however, SNP and not
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Fig. 1 Nitric oxide production in sorghum leaves. Transversal leaf

cuts from control or salt-treated sorghum leaf were vacuum loaded

with 20 mM Hepes (pH 7.5) containing 15 lM DAF-FM DA. After

washing the excess of dye, the cuts were mounted and visualized by

confocal laser microscopy. a Images depict one representative picture

of the leaf cuts of each treatment. Inset shows a close up (29) of leaf

tissues. Bar 50 lM. b Quantification of the green fluorescence pixel

intensity expressed as relative units with respect to the control

treatment, from 80 to 120 mesophyll cells taken from at least three

different plants. Values are expressed as mean ± SE. a P \ 0.05

versus control (t test)
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NNA markedly enhanced PPCK3 transcript levels in the

dark (Fig. 3c).

Short-term experiments were carried out with the NO

donor SNAP (S-nitroso-N-acetyl-1,1-penicillamine), which

has a faster NO releasing rate (Lander et al. 1993), and with

the NO scavenger cPTIO (2-(4-carboxyphenyl)-4,4,5,5-

tetramethylimidazoline-1-oxyl-3-oxide) (Fig. 4). These

compounds showed less pleiotropic effects than SNP and

NNA. Indeed, overnight treatment of excised leaves with

SNAP or cPTIO did not change photosynthetic gas-

exchange parameters (Fig. 4a), PEPCase activity (Fig. 4c)

or PPCK gene expression (Fig. 4d). Both SNAP and

cPTIO treatments moderately increased PEPCase-k activity

in the light (Fig. 4b), and SNAP treatment greatly

enhanced PEPCase-k activity in the dark (Fig. 4b). Com-

parable effects on PEPCase-k and PEPCase activity were

produced by short-term treatments with SNP and NNA

instead of SNAP and cPTIO (Table 2).

The ability of the NO donor SNP to change NO levels

in sorghum plants was assessed by measuring nitrite

concentration by Griess assay (Supplementary Fig. S1).

Nitrite is one of the two primary stable and non-volatile

breakdown products of NO and its level was increased by

SNP treatment, both in long-term (Supplementary Fig.

S1a) and in short-term (Supplementary Fig. S1b) experi-

ments. Similar results were obtained with NO quantifica-

tion by fluorescent microscopy imaging (Supplementary

Fig. S2).

Collectively, the data show that increased NO levels

caused enhanced PEPCase-k activity in the dark, the same

effect previously observed in salt-treated plants (Eche-

varrı́a et al. 2001; Garcı́a-Mauriño et al. 2003). As in the

case of salinity (Monreal et al. 2013), this effect was not

dependent solely on changes of PPCK mRNA levels.

NO effects on PEPCase-k activity are not dependent

on protein synthesis

In the leaves of C4 plants, light upregulates PEPCase-k

activity in a process dependent on protein synthesis, and

cycloheximide (CHX) has been shown to suppress PEP-

Case-k activity and PEPCase phosphorylation (Jiao et al.

1991; Giglioli-Guivarc’h et al. 1996). Light-triggered

PEPCase-k activity in excised leaves (Fig. 5a) either sup-

plied overnight with SNP or not. SNP increased PEPCase-k

activity to some extent, both in the light and in the dark, as

has been shown in previous experiments. In a subsequent

experiment, leaves were illuminated to induce PEPCase-k

synthesis, and then CHX was added (Fig. 5b). This caused
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Fig. 2 Effect of the NO

synthesis inhibitor NNA and the

NO donor SNP on growth,

photosynthesis, and stomatal

conductance of sorghum in

long-term experiments. Plants

were supplied with 200 lM of

N-nitro-L-arginine (NNA) or

200 lM of sodium nitroprusside

(SNP) for 10 days. Subsets of

plants were cultured under Fe

restriction (10 lM instead of

100 lM NaFe-EDTA) for the

same time. NNA and SNP

treatment was performed by

addition of the compound to the

culture medium. a Effect of

NNA, SNP, or low Fe on

sorghum growth. b Gas-

exchange analysis of sorghum

leaves. A, net photosynthetic

rate; gs, stomatal conductance

Table 1 Effect of long-term treatment with SNP, NNA and low Fe

on sorghum growth

Treatment Shoots (g) Roots (g)

FW DW FW DW

Control 6.74 ± 0.84 0.82 ± 0.12 5.27 ± 0.65 0.31 ± 0.04

SNP 2.98 ± 1.50 0.42 ± 0.21 3.45 ± 1.74 0.23 ± 0.12

NNA 1.55 ± 0.94 0.23 ± 0.14 1.41 ± 0.97 0.14 ± 0.1

Low Fe 1.29 ± 0.61 0.14 ± 0.07 1.36 ± 0.85 0.09 ± 0.06

Plants used for the experiments in Fig. 2 were collected and fresh

weight (FW) and dry weight (DW) of shoots and roots were weighed.

Data are mean ± SE of three plants
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PEPCase-k activity disappearance at a higher rate in con-

trol than in SNP-treated leaves. In the latter case, PEPCase-

k activity kept at 70 % of leaves with SNP and without

CHX, and nearly as high as in control leaves. This effect

was not due to a decreased rate of absorption of CHX. This

compound increased the level of PPCK3 mRNA (Fig. 5c),

and the same increase was produced in the presence or in

the absence of SNP.

Some effects of salt on PEPCase-k activity are

dependent on NO

Salinity increases PEPCase-k activity in sorghum leaves by

several mechanisms (Monreal et al. 2013). Nonetheless, at

172 mM, the main effect of NaCl was to decrease the rate

of PEPCase-k protein turnover. As expected, CHX did not

decrease PEPCase-k activity in the light in 172 mM NaCl-

treated plants (Fig. 6a), given that CHX was added after

the light induction of the kinase. On the contrary, the effect

of salt on PEPCase-k was abolished by the NO scavenger

cPTIO (Fig. 6b). This result demonstrates the involvement

of NO in the effects of salt on PEPCase-k activity.

Salinity greatly decreased the rate of photosynthesis and

the stomatal conductance in sorghum leaves (see Supple-

mentary Fig. S3). Even so, the effect of cPTIO on leaves

from salt-treated plants was not related to alteration of

photosynthetic gas exchange, as it was not changed by

cPTIO. On the contrary, cPTIO was able to decrease NO

level in salt-treated plants (Supplementary Fig. S4).

Discussion

Despite the great advance in the knowledge of NO func-

tions and mechanisms of action in plants, a relatively small

amount of protein targets for NO have been identified. This

work demonstrates that PEPCase-k activity is modulated

by NO. In addition, results in this paper show that salinity

increases endogenous NO specifically in mesophyll cells of

sorghum leaves. The photosynthetic PEPCase isoenzyme
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Control SNP NNA
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Fig. 3 Effect of SNP and NNA on PEPCase activity, PEPCase-k

activity, and PPCK gene expression in long-term experiments. Plants

were treated with 200 lM SNP or 200 lM NNA for 10 days. Excised

leaves were placed in a 3 ml cuvette containing 0.01 mM Tris–HCl

buffer, pH 8, in the presence or absence of 200 lM SNP or 200 lM

NNA, and illuminated for 2 h (L) or kept at dark (D). a The in vitro

PEPCase-k activity was assayed using 15 lg of desalted protein

extracts, in the presence of 37 kBq of [c-32P]ATP and 0.2 U

exogenous purified C4 PEPCase, as described in ‘‘Materials and

methods’’. Phosphorylated proteins were analyzed by SDS-PAGE and

autoradiography. Arrow shows the phosphorylated PEPCase. The

PEPCase bands were quantified by phosphor imager (Fuji FLA-5100).

b In parallel, PEPCase activity was measured in leaf extracts. Values

of PEPCase activity the same in illuminated leaves as in leaves kept at

dark. c Quantitative PCR (qPCR) analysis of the relative PPCK1,

PPCK2 and PPCK3 transcript levels. Data are means ± SE from

three independent experiments
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(C4 PEPCase), which is located in mesophyll cells, is the

most abundant PEPCase isoenzyme in sorghum leaves.

Based on sequence and expression data, it was suggested

that PPCK1 encodes the kinase in mesophyll cells being

responsible for the phosphorylation of the C4 PEPCase

(Shenton et al. 2006). PPCK1 expression is triggered by

light, and (according to Ct values; Monreal et al. 2013) the

expression level of this gene is higher than those of PPCK2

and PPCK3. Salinity changes the phosphorylation status of

PEPCase in the light and in the dark, and these changes are

followed by increased malate synthesis in the dark period

that is subsequently used in photosynthesis in the light

(Echevarrı́a et al. 2001; Garcı́a-Mauriño et al. 2003). This

is in good accordance to the hypothesis that NO mediates

some of the effects of salinity on PEPCase-k.

Long-term treatments with SNP (NO donor) and with

NNA (inhibitor of NO synthesis) had a negative impact on

sorghum plants. These broad deleterious effects could be

due to NO imbalance and/or to specific effects of the
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Fig. 4 Effect of SNAP and cPTIO on net photosynthetic rate,

stomatal conductance, PEPCase activity, PEPCase-k activity, and

PPCK gene expression in short-term experiments. Excised leaves

were supplied overnight with 400 lM SNAP or 400 lM cPTIO.

a Gas-exchange analysis of sorghum leaves. b The leaves were

illuminated for 2 h (L) or kept in dark (D), and the in vitro PEPCase-k

activity (b), PEPCase activity (c), and quantitative PCR (qPCR)

analysis of the relative PPCK1, PPCK2 and PPCK3 transcript levels

(d) were measured as in Fig. 3. PEPCase activity was the same in

illuminated leaves as in leaves kept at dark Data are means ± SE

from three independent experiments

Table 2 Effect of short-term treatment with SNP and NNA on

PEPCase-k and PEPCase activity

Treatment PEPCase-k activity (%) PEPCase activity

Dark Light (U mg-1 protein)

Control 34 ± 10 100 3.5 ± 0.1

SNP 83 ± 33 145 ± 35 3.8 ± 0.5

NNA 39 ± 4 108 ± 17 3.7 ± 0.1

Excised sorghum leaves were supplied overnight with 200 lM of the

NO donor SNP or 200 lM of the NO synthesis inhibitor NNA. Other

experimental conditions as in Fig. 3. Data are mean ± SE of two

independent experiments
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chemicals. The excess NO, as a consequence of extended

SNP supply, could promote nitrosative stress (Corpas et al.

2011), and NNA is known to cause iron deficiency chlo-

rosis in plants (Graziano and Lamattina 2005). A primary

symptom resulting from iron deficiency is leaf yellowing,

and this effect could be appreciated in NNA-treated sor-

ghum plants. Iron deficiency induces a decline of rates of

net photosynthesis and severely Fe chlorotic leaves result

in lower stomatal opening (Larbi et al. 2006). Even so, the

effects of NNA on photosynthetic gas-exchange parameters

were smaller than the drop caused by reducing Fe supply

from 100 to 10 lM NaFe-EDTA, and photosynthetic

activity was noticeable, although reduced, in NNA-treated

plants. This is a fundamental fact, because the light-med-

iated up-regulation of PEPCase-k is dependent on

photosynthetic activity (Jiao and Chollet 1992; Monreal

et al. 2010). Despite of the diverse effects of long-term

treatment, it could be observed that SNP increased PEP-

Case-k activity, resembling salinity effect. Short-term

treatments with NO donors confirmed that they increased

PEPCase-k activity both in illuminated leaves and in leaves

kept at dark. At least in part, these effects were independent

on protein synthesis, the same as previously demonstrated

for salt stress (Monreal et al. 2013). In addition, not only

NO donors mimicked salt effect on PEPCase-k activity, but

also scavenging of NO abolished it. This strongly suggests

that some effects of salinity on sorghum plants are medi-

ated by NO.

NO does not seem to be indispensable for light-triggered

up-regulation of PEPCase-k activity and PPCK1 expres-

sion, which are not impaired by NNA or cPTIO. This

suggests that the control of PEPCase-k activity by NO is

related to stress responses more than being involved in the

basic functioning of C4 photosynthesis. In this line,

increased PEPCase-k activity has been reported to be

associated to nitrogen stress (Ueno et al. 2000), phosphate

starvation (Gregory et al. 2009), oxidative stress (Izui et al.

2004) and salinity (Echevarrı́a et al. 2001; Garcı́a-Mauriño

et al. 2003). Further studies will clarify whether NO reg-

ulates PEPCase-k activity in every stressful condition or if

its action is restricted to salinity. Particularly appealing is

the effect of long-term treatment with SNP on PPCK3

expression. There is no information about the localization

or the biological role for this kinase, and it may function in

stress responses.

The turnover of PEPCase-k is thought to be regulated by

the ubiquitin/proteasome pathway (Agetsuma et al. 2005),
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Fig. 5 Short-term effect of the

NO donor SNP and

cycloheximide on PEPCase-k

activity and PPCK3 gene

expression. Excised leaves were

placed in a 3 mL cuvette

containing 0.01 mM Tris–HCl

buffer, pH 8, and were supplied

with 200 lM SNP overnight

when indicated. a The leaves

were illuminated for 2 h (L) or

kept in dark (D), and the in vitro

PEPCase-k activity was

measured as in Fig. 3. b The

leaves were illuminated for

30 min and then supplied with

20 lM cycloheximide (CHX)

when indicated, and illuminated

subsequently for 2.5 h. Data are

means ± SE from two

independent experiments.

c Quantitative PCR (qPCR)

analysis of the relative PPCK3

transcript level

CHX CHX CHX cPTIO
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a b
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32P][ -PEPC
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Fig. 6 The NO scavenger cPTIO decreases PEPCase-k activity in

illuminated leaves from salt-stressed plants. a Leaves from control

and 172 mM NaCl-treated plants (10 days) were illuminated for

30 min and then supplied with 20 lM cycloheximide (CHX) when

indicated, and illuminated subsequently for 2.5 h. b Leaves from

172 mM NaCl-treated plants (10 days) were supplied overnight with

400 lM cPTIO when indicated. The leaves were illuminated for

30 min and then supplied with 20 lM cycloheximide (CHX) when

indicated, and illuminated subsequently for 2.5 h. The in vitro

PEPCase-k activity was measured as in Fig. 3
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and salinity (at least in part by increasing ABA; Monreal

et al. 2007a), augmented PEPCase-k activity because of

decreased rate of protein degradation (Monreal et al. 2013).

Reducing the level of NO by cPTIO abolished this effect of

salinity, and this result establishes a link between salinity

and NO. Lithium decreased the rate of PEPCase-k activity

disappearance caused by CHX (Monreal et al. 2007b). In

this case, changes of PEPCase-k activity were directly

related to the amount of protein, establishing that ionic

stress, due to lithium treatment, was decreasing the rate of

protein turnover. In the same line, ABA effects are also

related to slower PEPCase-k degradation. Thus, it is pos-

sible that NO is also impacting on the turnover of the

protein, although direct effects on PEPCase-k activity

cannot be discarded.

NO and derived nitrogen species, such as peroxynitrite

(ONOO-), exert part of their biological activities by

chemical modification of target proteins. These modifica-

tions include S-nitrosylation, nitration and oxidation of

proteins (Besson-Bard et al. 2008; Astier et al. 2011;

Vandelle and Delledonne 2011). Therefore, it could be also

possible that NO controls PEPCase-k turnover and/or

protein activity by direct modification of the protein. Fur-

thermore, Ca2? and protein kinases are increasingly rec-

ognized as prevalent mediators of NO effects. The

interplay between NO and Ca2? is highly complex and has

important functional implications (Courtois et al. 2008).

Calcium-dependent protein kinases (CDPKs) that are reg-

ulated through NO-dependent mechanisms have been

implied in processes such as root growth (Lanteri et al.

2006) and stress responses and tolerance (Das and Pandey,

2010). Recombinant PEPCase-k protein was phosphory-

lated in vitro by the catalytic subunit of mammalian cyclic

AMP-dependent protein kinase (PKA) in a conserved

phosphorylation motif, which can be recognized by PKA

and by plant CDPKs (Monreal et al. 2013). Thus, it is

possible that the turnover of PEPCase-k is regulated by

phosphorylation by a CDPK, as it has been reported for

ACC synthase (Kamiyoshihara et al. 2010) and pyruvate

kinase (Tang et al. 2003). Further work is necessary to

clarify if nitrosylation/nitration and phosphorylation occur

in parallel or if only one of these modifications is involved

in the control of PEPCase-k turnover and/or protein

activity.

On the other hand, phospholipase D (PLD) and phos-

phatidic acid (PA) have been reported to be involved in NO

signaling (Laxalt et al. 2007; Lanteri et al. 2008; Distéfano

et al. 2012) and in the signaling pathway that triggers

PEPCase-k synthesis in response to light in sorghum leaves

(Monreal et al. 2010). Interestingly, high salinity (258 mM

NaCl) also increased PPCK mRNA levels (Monreal et al.

2013). This could be related to long-term treatment with

NO donors on PPCK gene expression.

Finally, further work will be necessary to clarify the

interplay between ABA and NO regulating PEPCase-k

levels. In addition to guard cells and salinity, there are

other metabolic backgrounds where NO and ABA work

together (Hancock et al. 2011). The proposed mechanisms

of regulation of PEPCase-k1 activity under salt stress are

summarized in Fig. 7.

In summary, this paper shows that the effects of salinity on

PEPCase-k activity in sorghum leaves can be mimicked with

NO donors, and blocked by NO scavengers. In addition,

salinity increases endogenous NO production specifically in

mesophyll cells, in which photosynthetic C4 PEPCase and

PEPCase-k1 are located, and were changes of activity of

these proteins would be most important in carbon economy

under prolonged salt stress. It can be concluded that NO is

involved in the complex control of PEPCase-k activity in

sorghum leaves, and it may mediate some of plants responses

to salinity that are related to this enzyme.

PPCK1PPCK1

CONJUGATION

ABA

CONJUGATION
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LIGHT
Sorghum leaf mesophyll cell
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PLD

PPCK1
mRNA PEPCase-k1

Ca2+

NO

CDPK

SALINITY WITH UBIQUITIN

DEGRADATION

Fig. 7 Mechanism of the regulation of PEPCase-k1 activity under

salt stress. Light triggers PPCK1 gene expression and PEPCase-k1

synthesis via activation of PLC (Giglioli-Guivarc’h et al. 1996) and

PLD (Monreal et al. 2010). Salinity greatly enhances PEPCase-k

activity (Echevarrı́a et al. 2001; Garcı́a-Mauriño et al. 2003); 172 mM

salt treatment decreases the rate of PEPCase-k degradation, mean-

while 258 mM salt treatment increases PPCK gene expression and/or

mRNA stability (Monreal et al. 2013). Salinity increases ABA level,

which decreases the rate of PEPCase-k turnover (Monreal et al.

2007a). This mechanism proposes that NO mediates some of the

effects of salinity on PEPCase-k1 activity, increasing PPCK1 mRNA

level, decreasing protein degradation and/or activating PEPCase-k1.

A CDPK, which could be up-regulated by NO, has been proposed to

regulate PEPCase-k1 degradation (Monreal et al. 2013). This complex

system impacts on photosynthetic C4 PEPCase and contributes to a

better carbon balance under salt stress (Garcı́a-Mauriño et al. 2003)

Fig. 1
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