Skip to main content
Log in

Factors involved in the rise of phosphoenolpyruvate carboxylase-kinase activity caused by salinity in sorghum leaves

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Salinity increases phosphoenolpyruvate carboxylase kinase (PEPCase-k) activity in sorghum leaves. This work has been focused on the mechanisms responsible for this phenomenon. The light-triggered expression of SbPPCK1 gene, accountable for the photosynthetic C4-PEPCase-k, is controlled by a complex signal transduction chain involving phospholipases C and D (PLC and PLD). These two phospholipase-derived signalling pathways were functional in salinized plants. Pharmacological agents that act on PLC (U-73122, neomycin) or PLD (n-butanol) derived signals, blocked the expression of SbPPCK1, but had little effect on PEPCase-k activity. This discrepancy was further noticed when SbPPCK1-3 gene expression and PEPCase-k activity were studied in parallel. At 172 mM, the main effect of NaCl was to decrease the rate of PEPCase-k protein turnover. Meanwhile, 258 mM NaCl significantly increased both SbPPCK1 and SbPPCK2 gene expression and/or mRNA stability. The combination of these factors contributed to maintain a high PEPCase-k activity in salinity. LiCl increased calcium-dependent protein kinase (CDPK) activity in illuminated sorghum leaves while it decreased the rate of PEPCase-k degradation. The latter effect was restrained by W7, an inhibitor of CDPK activity. Recombinant PEPCase-k protein was phosphorylated in vitro by PKA. A conserved phosphorylation motif, which can be recognized by PKA and by plant CDPKs, is present in the three PEPCase-ks proteins. Thus, it is possible that a phosphorylation event could be controlling (increasing) the stability of PEPCase-k in salinity. These results propose a new mechanism of regulation of PEPCase-k levels, and highlight the relevance of the preservation of key metabolic elements during the bulk degradation of proteins, which is commonly associated to stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

PI-PLC:

Phosphoinositide-specific phospholipase C

PLD:

Phospholipase D

CDPK:

Ca2+-dependent protein kinase

IP3 :

Inositol-1,4,5-trisphosphate

PEPCase:

Phosphoenolpyruvate carboxylase

PEPCase-k:

Phosphoenolpyruvate carboxylase-kinase

References

  • Agetsuma M, Furumoto T, Yanagisawa S, Izui K (2005) The ubiquitin–proteasome pathway is involved in rapid degradation of phosphoenolpyruvate carboxylase kinase for C4 photosynthesis. Plant Cell Physiol 46:389–398

    Article  PubMed  CAS  Google Scholar 

  • Alvarez R, García-Mauriño S, Feria AB, Vidal J, Echevarría C (2003) A conserved 19-amino acid synthetic peptide from the carboxy terminus of phosphoenolpyruvate carboxylase inhibits the in vitro phosphorylation of the enzyme by the calcium-independent phosphoenolpyruvate carboxylase kinase. Plant Physiol 132:1097–1106

    Article  PubMed  CAS  Google Scholar 

  • Amzallag GN, Lerner HR, Poljakoff-Mayber A (1990) Exogenous ABA as a modulator of the response of sorghum to high salinity. J Exp Bot 41:1529–1534

    Article  CAS  Google Scholar 

  • Asano T, Tanaka N, Yang GX, Hayashi N, Komatsu S (2005) Genome-wide identification of the rice calcium-dependent protein kinase and its closely related kinase gene families: comprehensive analysis of the CDPKs gene family in rice. Plant Cell Physiol 46:356–366

    Article  PubMed  CAS  Google Scholar 

  • Asano T, Hayashi N, Kobayashi M, Aoki N, Miyao A, Mitsuhara I, Ichikawa H, Komatsu S, Hirochika H, Kikuchi S, Ohsugi R (2012) A rice calcium-dependent protein kinase OsCPK12 oppositely modulates salt-stress tolerance and blast disease resistance. Plant J 69:26–36

    Article  PubMed  CAS  Google Scholar 

  • Bakrim N, Prioul JL, Dellens E, Rocher JP, Arrio-Dupont M, Vidal J, Gadal P, Chollet R (1993) Regulatory phosphorylation of C4 phosphoenolpyruvate carboxylase. A cardinal event influencing the photosynthesis rate in sorghum and maize. Plant Physiol 101:891–897

    PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Chae HS, Kieber JJ (2005) Eto Brute? Role of ACS turnover in regulating ethylene biosynthesis. Trends Plant Sci 10:291–296

    Article  PubMed  CAS  Google Scholar 

  • Chen S, Liu GS, Wang YY, Sun YH, Chen J (2011) Cloning of a calcium-dependent protein kinase gene NtCDPK12, and its induced expression by high-salt and drought in Nicotiana tabacum. J Integr Agric 12:1851–1860

    Google Scholar 

  • Cheng SH, Willmann MR, Chen HC, Sheen J (2002) Calcium signaling through protein kinases. The Arabidopsis calcium-dependent protein kinase gene family. Plant Physiol 129:469–485

    Article  PubMed  CAS  Google Scholar 

  • Chollet R, Vidal J, O’Leary M (1996) PEPC: a ubiquitous highly regulated enzyme in plants. Annu Rev Plant Physiol Plant Mol Biol 47:273–298

    Article  PubMed  CAS  Google Scholar 

  • Coursol S, Giglioli-Guivarc’h N, Vidal J, Pierre JN (2000) An increase in phosphoinositide-specific phospholipase C activity precedes induction of C4 phosphoenolpyruvate carboxylase in illuminated and NH4Cl-treated protoplasts from Digitaria sanguinalis. Plant J 23:497–506

    Article  PubMed  CAS  Google Scholar 

  • Das R, Pandey GK (2010) Expressional analysis and role of calcium regulated kinases in abiotic stress signalling. Curr Genomics 11:2–13

    Article  PubMed  CAS  Google Scholar 

  • Doubnerova V, Ryslava H (2011) What can enzymes of C4 photosynthesis do for C3 plants under stress? Plant Sci 180:575–583

    Article  PubMed  CAS  Google Scholar 

  • Echevarría C, Vidal J (2003) The unique phosphoenolpyruvate carboxylase kinase. Plant Physiol Biochem 41:541–547

    Article  Google Scholar 

  • Echevarría C, Vidal J, Jiao JA, Chollet R (1990) Reversible light activation of phosphoenolpyruvate carboxylase protein-serine kinase in maize leaves. FEBS Lett 275:25–28

    Article  PubMed  Google Scholar 

  • Echevarría C, Pacquit V, Bakrim N, Osuna L, Delgado B, Arrio-Dupont M, Vidal J (1994) The effect of pH on the covalent and metabolic control of C4 phosphoenolpyruvate carboxylase from Sorghum leaf. Arch Biochem Biophys 315:425–430

    Article  PubMed  Google Scholar 

  • Echevarría C, García-Mauriño S, Alvarez R, Soler A, Vidal J (2001) Salt stress increases the Ca2+-independent phosphoenolpyruvate carboxylase kinase activity in Sorghum plants. Planta 214:283–287

    Article  PubMed  Google Scholar 

  • Falquet L, Pagni M, Bucher P, Hulo N, Sigrist CJ, Hofmann K, Bairoch A (2002) The PROSITE database, its status in 2002. Nucleic Acids Res 30:235–238

    Article  PubMed  CAS  Google Scholar 

  • Feria AB, Alvarez R, Cochereau L, Vidal J, García-Mauriño S, Echevarría C (2008) Regulation of phosphoenolpyruvate carboxylase phosphorylation by metabolites and abscisic acid during the development and germination of barley seeds. Plant Physiol 148:761–774

    Article  PubMed  CAS  Google Scholar 

  • Fontaine V, Hartwell J, Jenkins GI, Nimmo GA, Nimmo HG (2002) Arabidopsis thaliana contains two phosphoenolpyruvate carboxylase kinase genes with different expression patterns. Plant Cell Environ 25:115–122

    Article  CAS  Google Scholar 

  • Fukayama H, Tamai T, Taniguchi Y, Sullivan S, Miyao M, Nimmo HG (2006) Characterization and functional analysis of phosphoenolpyruvate carboxylase kinase genes in rice. Plant J 47:258–268

    Article  PubMed  CAS  Google Scholar 

  • Furumoto T, Izui K, Quinn V, Furbank RT, von Caemmerer S (2007) Phosphorylation of phosphoenolpyruvate carboxylase is not essential for high photosynthetic rates in the C4 species Flaveria bidentis. Plant Physiol 144:1936–1945

    Article  PubMed  CAS  Google Scholar 

  • Gandullo J, Alvarez R, Echevarría C (2008) A protease activity co-purified with the C4 PEPC from sorghum leaves is specifically activated by a synthetic peptide from its C-terminal. Physiol Plant 133:P11–P124

    Google Scholar 

  • García MN, Giammaria V, Grandellis C, Téllez-Iñón MT, Ulloa RM, Capiati DA (2012) Characterization of StABF1, a stress-responsive bZIP transcription factor from Solanum tuberosum L. that is phosphorylated by StCDPK2 in vitro. Planta 235:761–778

    Article  Google Scholar 

  • García-Mauriño S, Monreal JA, Alvarez R, Vidal J, Echevarría C (2003) Characterization of salt stress-enhanced phosphoenolpyruvate carboxylase kinase activity in leaves of Sorghum vulgare: independence from osmotic stress, involvement of ion toxicity and significance of dark phosphorylation. Planta 216:648–655

    PubMed  Google Scholar 

  • Giglioli-Guivarc’h N, Pierre JN, Brown S, Chollet R, Vidal J, Gadal P (1996) The light-dependent transduction pathway controlling the regulatory phosphorylation of C4-phosphoenolpyruvate carboxylase in protoplasts from Digitaria sanguinalis. Plant Cell 8:573–586

    PubMed  Google Scholar 

  • Gonzalez MC, Sanchez R, Cejudo FJ (2003) Abiotic stresses affecting water balance induce phosphoenolpyruvate carboxylase expression in roots of wheat seedlings. Planta 216:985–992

    PubMed  CAS  Google Scholar 

  • Gousset-Dupont A, Lebouteiller B, Monreal J, Echevarría C, Pierre JN, Hodges M, Vidal J (2005) Metabolite and post-translational control of phosphoenolpyruvate carboxylase from leaves and mesophyll cell protoplasts of Arabidopsis thaliana. Plant Sci 169:96–1101

    Article  Google Scholar 

  • Gregory AL, Hurley BA, Tran HT, Valentine AJ, She YM, Knowles VL, Plaxton WC (2009) In vivo regulatory phosphorylation of the phosphoenolpyruvate carboxylase AtPPC1 in phosphate-starved Arabidopsis thaliana. Biochem J 420:57–65

    Article  PubMed  CAS  Google Scholar 

  • Hartwell J, Gill A, Nimmo GA, Wilkins MB, Jenkins GI, Nimmo HG (1999) Phosphoenolpyruvate carboxylase kinase is a novel protein kinase regulated at the level of expression. Plant J 20:333–342

    Article  PubMed  CAS  Google Scholar 

  • Hasegawa PM, Bressan RA, Zhu JK, Bohnert HJ (2000) Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 51:463–499

    Article  PubMed  CAS  Google Scholar 

  • Hewitt EJ (1966) Sand and water culture methods used in the study of plant nutrition. Commonwealth Bureau of Horticultural and Plantation Crops, East Malling Tech Commun No 22

  • Hidaka H, Sasaki Y, Tanaka T, Endo T, Ohno S, Fujii Y, Nagata T (1981) N-(6-aminohexyl)-5-chloro-1-naphthalenesulfonamide, a calmodulin antagonist, inhibits cell proliferation. Proc Nat Acad Sci USA 78:4354–4357

    Article  PubMed  CAS  Google Scholar 

  • Hrabak EM, Chan CW, Gribskov M, Harper JF, Choi JH, Halford N, Kudla J, Luan S, Nimmo HG, Sussman MR, Thomas M, Walker-Simmons K, Zhu JK, Harmon AC (2003) The Arabidopsis CDPK-SnRK superfamily of protein kinases. Plant Physiol 132:666–680

    Article  PubMed  CAS  Google Scholar 

  • Izui K, Matsumura H, Furumoto T, Kai Y (2004) Phosphoenolpyruvate carboxylase: a new era of structural biology. Annu Rev Plant Biol 55:69–84

    Article  PubMed  CAS  Google Scholar 

  • Kamiyoshihara Y, Iwata M, Fukaya T, Tatsuki M, Mori H (2010) Turnover of LeACS2, a wound-inducible 1-aminocyclopropane-1-carboxylic acid synthase in tomato, is regulated by phosphorylation/dephosphorylation. Plant J 64:140–150

    PubMed  CAS  Google Scholar 

  • Kemp BE, Pearson RB (1990) Protein kinase recognition sequence motifs. Trends Biochem Sci 15:342–346

    Article  PubMed  CAS  Google Scholar 

  • Kende H (1973) Ethylene biosynthesis. Annu Rev Plant Physiol Plant Mol Biol 44:283–303

    Article  Google Scholar 

  • Lee YJ, Yoo BC, Harmon AC (1998) Kinetic and calcium-binding properties of three calcium-dependent protein kinase isoenzymes from soybean. Biochemistry 37:6801–6809

    Article  PubMed  CAS  Google Scholar 

  • Li B, Zhang XQ, Chollet R (1996) Phosphoenolpyruvate carboxylase kinase in tobacco leaves is activated by light in a similar but not identical way as in maize. Plant Physiol 111:497–505

    PubMed  CAS  Google Scholar 

  • Li A, Wang X, Leseberg CH, Jia J, Mao L (2008) Biotic and abiotic stress responses through calcium-dependent protein kinase (CDPK) signaling in wheat (Triticum aestivum L.). Plant Signal Behav 3:654–656

    Article  PubMed  Google Scholar 

  • Marsh JT, Sullivan S, Hartwell J, Nimmo HG (2003) Structure and expression of phosphoenolpyruvate carboxylase kinase genes in solanaceae. A novel gene exhibits alternative splicing. Plant Physiol 133:2021–2028

    Article  PubMed  CAS  Google Scholar 

  • Mehlmer N, Wurzinger B, Stael S, Hofmann-Rodrigues D, Csaszar E, Pfister B, Bayer R, Teige M (2010) The Ca2+-dependent protein kinase CPK3 is required for MAPK-independent salt-stress acclimation in Arabidopsis. Plant J 63:484–498

    Article  CAS  Google Scholar 

  • Monreal JA, Feria AB, Vinardell JM, Vidal J, Echevarría C, García-Mauriño S (2007a) ABA modulates the degradation of phosphoenolpyruvate carboxylase kinase in sorghum leaves. FEBS Lett 581:3468–3472

    Article  PubMed  CAS  Google Scholar 

  • Monreal JA, López-Baena FJ, Vidal J, Echevarría C, García-Mauriño S (2007b) Effect of LiCl on phosphoenolpyruvate carboxylase kinase and the phosphorylation of phosphoenolpyruvate carboxylase in leaf disks and leaves of Sorghum vulgare. Planta 225:801–812

    Article  PubMed  CAS  Google Scholar 

  • Monreal JA, López-Baena FJ, Vidal J, Echevarría C, García-Mauriño S (2010) Involvement of phospholipase D and phosphatidic acid in the light-dependent up-regulation of sorghum leaf phosphoenolpyruvate carboxylase-kinase. J Exp Bot 61:2819–2827

    Article  PubMed  CAS  Google Scholar 

  • Munnik T (2001) Phosphatidic acid: an emerging plant lipid second messenger. Trends Plant Sci 6:227–233

    Article  PubMed  CAS  Google Scholar 

  • Munnik T, Arisz SA, de Vrije T, Musgrave A (1995) G protein activation stimulates phospholipase D signaling in plants. Plant Cell 7:2197–2210

    PubMed  CAS  Google Scholar 

  • Nimmo GA, McNaughton GAL, Fewson CA, Wilkins MB, Nimmo HG (1987) Changes in the kinetic properties and phosphorylation state of phosphoenolpyruvate carboxylase in Zea mays leaves in response to light and dark. FEBS Lett 213:18–22

    Article  CAS  Google Scholar 

  • Nimmo GA, Wilkins MB, Nimmo HG (2001) Partial purification and characterization of a protein inhibitor of phosphoenolpyruvate carboxylase kinase. Planta 213:250–257

    Article  PubMed  CAS  Google Scholar 

  • Osuna L, Coursol S, Pierre JN, Vidal J (2004) A Ca2+ protein kinase with characteristics of protein kinase C in leaves and mesophyll cell protoplasts from Digitaria sanguinalis: possible involvement in the C4-phosphoenolpyruvate carboxylase phosphorylation cascade. Biochem Biophys Res Commun 314:428–433

    Article  PubMed  CAS  Google Scholar 

  • Paterson AH, Bowers JE, Bruggmann R, Dubchak I, Grimwood J, Gundlach H, Haberer G, Hellsten U, Mitros T, Poliakov A, Schmutz J, Spannagl M, Tang H, Wang X, Wicker T, Bharti AK, Chapman J, Feltus FA, Gowik U, Grigoriev IV, Lyons E, Maher CA, Martis M, Narechania A, Otillar RP, Penning BW, Salamov AA, Wang Y, Zhang L, Carpita NC, Freeling M, Gingle AR, Hash CT, Keller B, Klein P, Kresovich S, McCann MC, Ming R, Peterson DG, Mehboobur R, Ware D, Westhoff P, Mayer KF, Messing J, Rokhsar DS (2009) The Sorghum bicolor genome and the diversification of grasses. Nature 457:551–556

    Article  PubMed  CAS  Google Scholar 

  • Popova LP, Stoinova ZG, Maslenkova LT (1995) Involvement of abscisic acid in photosynthetic process in Hordeum vulgare L. during salinity stress. J Plant Growth Regul 14:211–218

    Article  CAS  Google Scholar 

  • Rosegrant MW, Ringler C, Zhu T (2009) Water for agriculture: maintaining food security under growing scarcity. Annu Rev Enviro Resour 34:205–222

    Article  Google Scholar 

  • Saijo Y, Hata S, Kyozuka J, Shimamoto K, Izui K (2000) Over-expression of a single Ca2+-dependent protein kinase confers both cold and salt/drought tolerance on rice plants. Plant J 23:319–327

    Article  PubMed  CAS  Google Scholar 

  • Saitou N, Nei M (1987) The neighbour-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425

    PubMed  CAS  Google Scholar 

  • Sanchez R, Flores A, Cejudo FJ (2006) Arabidopsis phosphoenolpyruvate carboxylase genes encode immunologically unrelated polypeptides and are differentially expressed in response to drought and salt stress. Planta 223:901–909

    Article  PubMed  CAS  Google Scholar 

  • Sankhla N, Huber W (1974) Regulation of balance between C3 and C4 pathway: role of abscisic acid. Z Pflanzenphysiol 74:267–271

    CAS  Google Scholar 

  • Saze H, Ueno Y, Hisabori T, Hayashi H, Izui K (2001) Thioredoxin-mediated reductive activation of a protein kinase for the regulatory phosphorylation of C4-form phosphoenolpyruvate carboxylase from maize. Plant Cell Physiol 42:1295–1302

    Article  PubMed  CAS  Google Scholar 

  • Shenton M, Fontaine V, Hartwell J, Marsh JT, Jenkins GI, Nimmo HG (2006) Distinct patterns of control and expression amongst members of the PEP carboxylase kinase gene family in C4 plants. Plant J 48:45–53

    Article  PubMed  CAS  Google Scholar 

  • Stitt M, Heldt HW (1985) Generation and maintenance of concentration gradients between the mesophyll and bundle sheath in maize leaves. Biochim Biophys Acta 808:400–414

    Article  CAS  Google Scholar 

  • Sullivan S, Jenkins GI, Nimmo HG (2004) Roots, cycles and leaves. Expression of the phosphoenolpyruvate carboxylase kinase gene family in soybean. Plant Physiol 135:2078–2087

    Article  PubMed  CAS  Google Scholar 

  • Takahashi-Terada A, Kotera M, Ohshima K, Furumoto T, Matsumura H, Kai Y, Izui K (2005) Maize phosphoenolpyruvate carboxylase. Mutations at the putative binding site for glucose 6-phosphate caused desensitization and abolished responsiveness to regulatory phosphorylation. J Biol Chem 280:11798–11806

    Article  PubMed  CAS  Google Scholar 

  • Tamura K, Peterson D, Peterson N, Stecher G, Nei M, Kumar S (2011) MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739

    Article  PubMed  CAS  Google Scholar 

  • Tang GQ, Hardin SC, Dewey R, Huber SC (2003) A novel C-terminal proteolytic processing of cytosolic pyruvate kinase, its phosphorylation and degradation by the proteasome in developing soybean seeds. Plant J 34:77–99

    Article  PubMed  CAS  Google Scholar 

  • Tsuchida Y, Furumoto T, Izumida A, Hata S, Izui K (2001) Phosphoenolpyruvate carboxylase kinase involved in C4 photosynthesis in Flaveria trinervia: cDNA cloning and characterization. FEBS Lett 507:318–322

    Article  PubMed  CAS  Google Scholar 

  • Ueno Y, Imanari E, Emura J, Yoshizawa-Kumagaye K, Nakajima K, Inami K, Shiba T, Sakakibara H, Sugiyama T, Izui K (2000) Immunological analysis of the phosphorylation state of maize C4-form phosphoenolpyruvate carboxylase with specific antibodies raised against a synthetic phosphorylated peptide. Plant J 21:17–26

    Article  PubMed  CAS  Google Scholar 

  • Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6:66–71

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by the Junta de Andalucía (PAI group BIO298) and BFU 2007-61431/BMC (Ministerio de Educación y Ciencia). C. Arias is in receipt of a grant from Junta de Andalucía. The authors acknowledge C. Galván-Ampudia’s generous gift of pETH16H and pGEX-KG vectors, and J Vidal, C Testerink and S Muñoz’s advice with respect to CDPK activity assay, PLD and PA measurements, and purification of recombinant proteins.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sofía García-Mauriño.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOC 1009 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Monreal, J.A., Arias-Baldrich, C., Pérez-Montaño, F. et al. Factors involved in the rise of phosphoenolpyruvate carboxylase-kinase activity caused by salinity in sorghum leaves. Planta 237, 1401–1413 (2013). https://doi.org/10.1007/s00425-013-1855-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-013-1855-7

Keywords

Navigation