Skip to main content
Log in

Changes at the 3′-untranslated region stabilize Rubisco activase transcript levels during heat stress in Arabidopsis

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Inhibition of photosynthesis by heat stress is accompanied by functional impairment of Rubisco’s chaperone, activase (RCA), resulting in deactivation of Rubisco. Since activase is extremely sensitive to thermal denaturation, changes in expression of RCA at the transcript or protein level could provide a mechanism for acclimation of photosynthesis to prolonged heat stress. Using quantitative real-time PCR (qPCR) we show steady-state RCA transcript levels in Arabidopsis thaliana are stabilized during prolonged exposure to moderate heat (35  °C). A survey of RCA transcripts indicates heat stress did not alter the relative abundance of transcripts encoding α and β-isoforms of activase that are produced by alternative splicing of the pre-mRNA. Instead, mRNA stabilization in heat-stressed plants coincided with a significant reduction in the average length of activase 3′-untranslated regions, and was associated with enrichment of an uncharacterized activase mRNA splice variant, AtRCAβ2. Transcript-specific qPCR revealed AtRCAβ2 mRNA was more stable than AtRCAα and AtRCAβ mRNA in heat-stressed plants. Using an inducible transgenic system, we found that RCA transcripts lacking their native 3′-untranslated region were significantly more stable than their full-length counterparts in vivo. Using this system, stability of the RCA protein was examined over 24 h in vivo, in the absence of RCA transcription. At both optimal and elevated temperatures, RCA protein levels remained stable in plants lacking RCA mRNA, but increased when RCA mRNA was present, particularly in heat-stressed plants. This study reveals a possible mechanism, involving post-transcriptional regulation of an important photosynthesis regulatory gene, for acclimation of photosynthesis to heat stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ainsworth EA, Ort DR (2010) How do we improve crop production in a warming world? Plant Physiol 154:526–530

    Article  PubMed  CAS  Google Scholar 

  • Atkin O, Scheurwater I, Pons T (2006) High thermal acclimation potential of both photosynthesis and respiration in two lowland Plantago species in contrast to an alpine congeneric. Glob Change Biol 12:500–515

    Article  Google Scholar 

  • Ayala-Ochoa A, Vargas-Suárez M, Loza-Tavera H, Sánchez-De-Jiménez E, León P, Jiménez-García LF (2004) In maize, two distinct ribulose 1,5-bisphosphate carboxylase/oxygenase activase transcripts have different day/night patterns of expression. Biochimie 86:439–449

    Article  PubMed  CAS  Google Scholar 

  • Barta C, Dunkle AM, Wachter RM, Salvucci ME (2010) Structural changes associated with the acute thermal instability of Rubisco activase. Arch Biochem Biophys 499:17–25

    Article  PubMed  CAS  Google Scholar 

  • Belostotsky DA (2008) State of decay: an update on plant mRNA turnover. Curr Top Microbiol 326:179–199

    Article  CAS  Google Scholar 

  • Berry J, Björkman O (1980) Photosynthetic response and adaptation to temperature in higher plants. Annu Rev Plant Physiol 31:491–543

    Article  Google Scholar 

  • Carmo-Silva AE, Salvucci ME (2011) The activity of Rubisco’s molecular chaperone, Rubisco activase, in leaf extracts. Photosynth Res 108:143–155

    Article  PubMed  CAS  Google Scholar 

  • Clough SJ, Bent AF (1998) Floral dip: a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 16:735–743

    Article  PubMed  CAS  Google Scholar 

  • Crafts-Brandner SJ, Law RD (2000) Effect of heat stress on the inhibition and recovery of the ribulose-1,5-bisphosphate carboxylase/oxygenase activation state. Planta 212:67–74

    Article  PubMed  CAS  Google Scholar 

  • Crafts-Brandner SJ, Salvucci ME (2000) Rubisco activase constrains the photosynthetic potential of leaves at high temperature and CO2. Proc Natl Acad Sci USA 97:13430–13435

    Article  PubMed  CAS  Google Scholar 

  • Crafts-Brandner SJ, Salvucci ME (2002) Sensitivity of photosynthesis in a C4 plant, maize, to heat stress. Plant Physiol 129:1773–1780

    Article  PubMed  CAS  Google Scholar 

  • Crafts-Brandner SJ, Salvucci ME (2004) Analyzing the impact of high temperature and CO2 on net photosynthesis: biochemical mechanisms, models and genomics. Field Crop Res 90:75–85

    Article  Google Scholar 

  • Crafts-Brandner SJ, Van de Loo FJ, Salvucci ME (1997) The two forms of Rubisco activase differ in sensitivity to elevated temperature. Plant Physiol 114:439–444

    PubMed  CAS  Google Scholar 

  • Curtis MD, Grossniklaus U (2003) A gateway cloning vector set for high-throughput functional analysis of genes in planta. Plant Physiol 133:462–469

    Article  PubMed  CAS  Google Scholar 

  • Demirevska-Kepova K, Simova-Stoilova L, Hölzer R, Feller U (2005) Heat stress effects on ribulose-1,5-bisphosphate carboxylase/oxygenase, Rubisco binding protein and Rubisco activase in wheat leaves. Biol Plant 49:521–525

    Article  CAS  Google Scholar 

  • DeRidder BP, Salvucci ME (2007) Modulation of Rubisco activase gene expression during heat stress in cotton (Gossypium hirsutum L.) involves post-transcriptional mechanisms. Plant Sci 172:246–254

    Article  CAS  Google Scholar 

  • Dwyer SA, Ghannoum O, Nicotra A, von Caemmerer S (2007) High temperature acclimation of C4 photosynthesis is linked to changes in photosynthetic biochemistry. Plant Cell Environ 30:53–66

    Article  PubMed  CAS  Google Scholar 

  • Eckstein A, Zięba P, Gabryś H (2012) Sugar and light effects on the condition of the photosynthetic apparatus of Arabidopsis thaliana cultured in vitro. J Plant Growth Regul 31:90–101

    Article  CAS  Google Scholar 

  • Feller U, Crafts-Brandner SJ, Salvucci ME (1998) Moderately high temperatures inhibit ribulose-1,5-bisphosphate carboxylase/oxygenase (Rubisco) activase-mediated activation of Rubisco. Plant Physiol 116:539–546

    Article  PubMed  CAS  Google Scholar 

  • Gutiérrez RA, Ewing RM, Cherry JM, Green PJ (2002) Identification of unstable transcripts in Arabidopsis by cDNA microarray analysis: rapid decay is associated with a group of touch- and specific clock-controlled genes. Proc Natl Acad Sci USA 99:11513–11518

    Article  PubMed  Google Scholar 

  • Haldimann P, Feller U (2004) Inhibition of photosynthesis by high temperature in oak (Quercus pubescens L.) leaves grown under natural conditions closely correlates with a reversible heat-dependent reduction of the activation state of ribulose-1,5-bisphosphate carboxylase/oxygenase. Plant Cell Environ 27:1169–1183

    Article  CAS  Google Scholar 

  • Haldimann P, Feller U (2005) Growth at moderately elevated temperature alters the physiological response of the photosynthetic apparatus to heat stress in pea (Pisum sativum L.) leaves. Plant Cell Environ 28:302–317

    Article  CAS  Google Scholar 

  • Hendrickson L, Sharwood R, Ludwig M, Whitney SM, Badger MR, von Caemmerer S (2008) The effects of Rubisco activase on C4 photosynthesis and metabolism at high temperature. J Exp Bot 59:1789–1798

    Article  PubMed  CAS  Google Scholar 

  • Hikosaka K, Ishikawa K, Borjigidai A, Muller O, Onoda Y (2006) Temperature acclimation of photosynthesis: mechanisms involved in the changes in temperature dependence of photosynthetic rate. J Exp Bot 57:291–302

    Article  PubMed  CAS  Google Scholar 

  • Hozain MI, Salvucci ME, Fokar M, Holaday AS (2010) The differential response of photosynthesis to high temperature for a boreal and temperate Populus species relates to differences in Rubisco activation and Rubisco activase properties. Tree Physiol 30:32–44

    Article  PubMed  CAS  Google Scholar 

  • Kim K, Portis AR (2005) Temperature dependence of photosynthesis in Arabidopsis plants with modifications in Rubisco activase and membrane fluidity. Plant Cell Physiol 46:522–530

    Article  PubMed  CAS  Google Scholar 

  • Kim K, Portis AR (2006) Kinetic analysis of the slow inactivation of Rubisco during catalysis: effects of temperature, O2 and Mg++. Photosynth Res 87:195–204

    Article  PubMed  CAS  Google Scholar 

  • Klein RR, Salvucci ME (1995) Rubisco, Rubisco activase and ribulose-5-phosphate kinase gene expression and polypeptide accumulation in a tobacco mutant defective in chloroplast protein synthesis. Photosynth Res 43:213–223

    Article  CAS  Google Scholar 

  • Kobza J, Edwards GE (1987) Influences of leaf temperature on photosynthetic carbon metabolism in wheat. Plant Physiol 83:69–74

    Article  PubMed  CAS  Google Scholar 

  • Kubien DS, Sage RF (2008) The temperature response of photosynthesis in tobacco with reduced amounts of Rubisco. Plant Cell Environ 31:407–418

    Article  PubMed  CAS  Google Scholar 

  • Kumar A, Portis AR Jr, Li C (2009) Arabidopsis thaliana expressing a thermostable chimeric Rubisco activase exhibits enhanced growth and higher rates of photosynthesis at moderately high temperatures. Photosynth Res 100:143–153

    Article  PubMed  CAS  Google Scholar 

  • Kurek I, Thom KC, Bertain SM, Madrigal A, Liu L, Lassner MW, Zhu G (2007) Enhanced thermostability of Arabidopsis Rubisco activase improves photosynthesis and growth rates under moderate heat stress. Plant Cell 19:3230–3241

    Article  PubMed  CAS  Google Scholar 

  • Larcher W (1995) Physiological plant ecology: ecophysiology and stress physiology of functional groups, 3rd edn. Springer, Berlin, pp 340–353

    Google Scholar 

  • Law RD, Crafts-Brandner SJ (1999) Inhibition and acclimation of photosynthesis to heat stress is closely correlated with activation of ribulose-1,5-bisphosphate carboxylase/oxygenase. Plant Physiol 120:173–181

    Article  PubMed  CAS  Google Scholar 

  • Law RD, Crafts-Brandner SJ (2001) High temperature stress increases the expression of wheat leaf ribulose-1,5-bisphosphate carboxylase/oxygenase activase protein. Arch Biochem Biophys 386:261–267

    Article  PubMed  CAS  Google Scholar 

  • Law RD, Crafts-Brandner SJ, Salvucci ME (2001) Heat stress induces the synthesis of a new form of ribulose-1,5-bisphosphate carboxylase/oxygenase activase in cotton leaves. Planta 214:117–125

    Article  PubMed  CAS  Google Scholar 

  • Lidder P, Gutiérrez RA, Salomé PA, McClung CR, Green PJ (2005) Circadian control of messenger RNA stability. Association with a sequence-specific messenger RNA decay pathway. Plant Physiol 138:2374–2385

    Article  PubMed  CAS  Google Scholar 

  • Liu ZR, Taub CC, McClung CR (1996) Identification of an Arabidopsis thaliana ribulose-1,5-bisphosphate carboxylase oxygenase activase (RCA) minimal promoter regulated by light and the circadian clock. Plant Physiol 112:43–51

    Article  PubMed  CAS  Google Scholar 

  • Logemann E, Birkenbihl RP, Ulker B, Somssich IE (2006) An improved method for preparing Agrobacterium cells that simplifies the Arabidopsis transformation protocol. Plant Methods 2:16

    Article  PubMed  Google Scholar 

  • Martino-Catt S, Ort DR (1992) Low temperature interrupts circadian regulation of transcriptional activity in chilling-sensitive plants. Proc Natl Acad Sci USA 89:3731–3735

    Article  PubMed  CAS  Google Scholar 

  • McClure BA, Hagen G, Brown CS, Gee MA, Guilfoyle TJ (1989) Transcription, organization, and sequence of an auxin-regulated gene cluster in soybean. Plant Cell 1:229–239

    PubMed  CAS  Google Scholar 

  • Mignone F, Gissi C, Liuni S, Pesole G (2002) Untranslated regions of mRNAs. Genome Biol 3:0004.1–0004.10

    Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue culture. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Narsai R, Howell KA, Millar A, O’Toole N, Small I, Whelan J (2007) Genome-wide analysis of mRNA decay rates and their determinants in Arabidopsis thaliana. Plant Cell 19:3418–3436

    Article  PubMed  CAS  Google Scholar 

  • Orozco BM, McClung CR, Werneke JM, Ogren WL (1993) Molecular basis of the ribulose-1,5-bisphosphate carboxylase/oxygenase activase mutation in Arabidopsis thaliana is a guanine-to-adenine transition at the 5′-splice junction of intron 3. Plant Physiol 102:227–232

    Article  PubMed  CAS  Google Scholar 

  • Pilgrim ML, McClung CR (1993) Differential involvement of the circadian clock in the expression of genes required for ribulose-1,5-bisphosphate carboxylase/oxygenase synthesis, assembly, and activation in Arabidopsis thaliana. Plant Physiol 103:553–564

    PubMed  CAS  Google Scholar 

  • Portis AR (2003) Rubisco activase—Rubisco’s catalytic chaperone. Photosynth Res 75:11–27

    Article  PubMed  CAS  Google Scholar 

  • Portis AR, Salvucci ME (2002) The discovery of Rubisco activase—yet another story of serendipity. Photosynth Res 73:257–264

    Article  CAS  Google Scholar 

  • Portis AR, Li CC, Wang DD, Salvucci ME (2008) Regulation of Rubisco activase and its interaction with Rubisco. J Exp Bot 59:1597–1604

    Article  PubMed  CAS  Google Scholar 

  • Price GD, von Caemmerer S, Evans JR, Siebke K, Anderson JM, Badger MR (1998) Photosynthesis is strongly reduced by antisense suppression of chloroplastic cytochrome bf complex in transgenic tobacco. Aust J Plant Physiol 25:445–452

    Article  CAS  Google Scholar 

  • Quinn PJ, Williams WP (1985) Environmentally induced changes in chloroplast membranes and their effects on photosynthesis. In: Barber J, Baker NR (eds) Photosynthetic mechanisms and the environment. Elsevier, Amsterdam, pp 1–47

    Google Scholar 

  • Rokka A, Zhang L, Aro E-M (2001) Rubisco activase: an enzyme with a temperature-dependent dual function? Plant J 25:463–471

    Article  PubMed  CAS  Google Scholar 

  • Rundle SJ, Zielinski RE (1991) Alterations in barley ribulose-1,5-bisphosphate carboxylase/oxygenase activase gene expression during development and in response to illumination. J Biol Chem 266:14802–14807

    PubMed  CAS  Google Scholar 

  • Ruuska SA, Andrews TJ, Badger MR, Price GD, Von Caemmerer S (2000) The role of chloroplast electron transport and metabolites in modulating Rubisco activity in tobacco. Insights from transgenic plants with reduced amounts of cytochrome b/f complex or glyceraldehyde 3-phosphate dehydrogenase. Plant Physiol 122:491–504

    Article  PubMed  CAS  Google Scholar 

  • Sage RF, Kubien DS (2007) The temperature response of C3 and C4 photosynthesis. Plant Cell Environ 30:1086–1106

    Article  PubMed  CAS  Google Scholar 

  • Sage RF, Way DA, Kubien DS (2008) Rubisco, Rubisco activase, and global climate change. J Exp Bot 59:1581–1595

    Article  PubMed  CAS  Google Scholar 

  • Salvucci ME (2008) Association of Rubisco activase with chaperonin-60 beta: a possible mechanism for protecting photosynthesis during heat stress. J Exp Bot 59:1923–1933

    Article  PubMed  CAS  Google Scholar 

  • Salvucci ME, Crafts-Brandner SJ (2004a) Inhibition of photosynthesis by heat stress: the activation state of Rubisco as a limiting factor in photosynthesis. Physiol Plant 120:179–186

    Article  PubMed  CAS  Google Scholar 

  • Salvucci ME, Crafts-Brandner SJ (2004b) Mechanism for deactivation of Rubisco under moderate heat stress. Physiol Plant 122:513–519

    Article  CAS  Google Scholar 

  • Salvucci ME, Crafts-Brandner SJ (2004c) Relationship between the heat tolerance of photosynthesis and the thermal stability of Rubisco activase in plants from contrasting thermal environments. Plant Physiol 134:1460–1470

    Article  PubMed  CAS  Google Scholar 

  • Salvucci ME, Osteryoung KW, Crafts-Brandner SJ, Vierling E (2001) Exceptional sensitivity of Rubisco activase to thermal denaturation in vitro and in vivo. Plant Physiol 127:1053–1064

    Article  PubMed  CAS  Google Scholar 

  • Salvucci ME, Van De Loo FJ, Stecher D (2003) Two isoforms of Rubisco activase in cotton, the products of separate genes not alternative splicing. Planta 216:736–744

    PubMed  CAS  Google Scholar 

  • Salvucci ME, DeRidder BP, Portis AR Jr (2006) Effect of activase level and isoform on the thermotolerance of photosynthesis in Arabidopsis. J Exp Bot 57:3793–3799

    Article  PubMed  CAS  Google Scholar 

  • Sánchez-De-Jiménez E, Medrano L, Martínez-Barajas E (1995) Rubisco activase, a possible new member of the molecular chaperone family. Biochemistry 34:2826–2831

    Article  PubMed  Google Scholar 

  • Schrader SM, Kleinbeck KR, Sharkey TD (2007) Rapid heating of intact leaves reveals initial effects of stromal oxidation on photosynthesis. Plant Cell Environ 30:671–678

    Article  PubMed  CAS  Google Scholar 

  • Sharkey TD, Badger MR, von Caemmerer S, Andrews TJ (2001) Increased heat sensitivity of photosynthesis in tobacco plants with reduced Rubisco activase. Photosynth Res 67:147–156

    Article  PubMed  CAS  Google Scholar 

  • Sinsawat V, Leipner J, Stamp P, Fracheboud Y (2004) Effect of heat stress on the photosynthetic apparatus in maize (Zea mays L.) grown at control or high temperature. Environ Exp Bot 52:123–129

    Article  CAS  Google Scholar 

  • Spreitzer RJ, Salvucci ME (2002) Rubisco: structure, regulatory interactions, and possibilities for a better enzyme. Annu Rev Plant Biol 53:449–475

    Article  PubMed  CAS  Google Scholar 

  • To K-Y, Suen D-F, Chen S-CG (1999) Molecular characterization of ribulose-1,5-bisphosphate carboxylase/oxygenase activase in rice leaves. Planta 209:66–76

    Article  PubMed  CAS  Google Scholar 

  • Wang D, Li X-F, Zhou Z-J, Feng X-P, Yang W-J, Jiang D-A (2010) Two Rubisco activase isoforms may play different roles in photosynthetic heat acclimation in the rice plant. Physiol Plant 139:55–67

    Article  PubMed  CAS  Google Scholar 

  • Watillon B, Kettmann R, Boxus P, Burny A (1993) Developmental and circadian pattern of Rubisco activase messenger-RNA accumulation in apple plants. Plant Mol Biol 23:501–509

    Article  PubMed  CAS  Google Scholar 

  • Weis E (1981) Reversible heat-inactivation of the Calvin cycle: a possible mechanism of the temperature regulation of photosynthesis. Planta 151:33–39

    Article  CAS  Google Scholar 

  • Werneke JM, Chatfield JM, Ogren WL (1989) Alternative mRNA splicing generates the two ribulosebisphosphate carboxylase/oxygenase activase polypeptides in spinach and Arabidopsis. Plant Cell 1:815–825

    PubMed  CAS  Google Scholar 

  • Yamori W, von Caemmerer S (2009) Effect of Rubisco activase deficiency on the temperature response of CO2 assimilation rate and Rubisco activation state: insights from transgenic tobacco with reduced amounts of Rubisco activase. Plant Physiol 151:2073–2082

    Article  PubMed  CAS  Google Scholar 

  • Yamori W, Suzuki K, Noguchi K, Nakai M, Terashima I (2006) Effects of Rubisco kinetics and Rubisco activation state on the temperature dependence of the photosynthetic rate in spinach leaves from contrasting growth temperatures. Plant Cell Environ 29:1659–1670

    Article  PubMed  CAS  Google Scholar 

  • Zhang N, Kallis RP, Ewy RG, Portis AR (2002) Light modulation of Rubisco in Arabidopsis requires a capacity for redox regulation of the larger Rubisco activase isoform. Proc Natl Acad Sci USA 99:3330–3334

    Article  PubMed  CAS  Google Scholar 

  • Zielinski RE, Werneke JM, Jenkins ME (1989) Coordinate expression of Rubisco activase and Rubisco during barley leaf cell development. Plant Physiol 90:516–521

    Article  PubMed  CAS  Google Scholar 

  • Zuo J, Niu QW, Chua NH (2000) An estrogen receptor-based transactivator XVE mediates highly inducible gene expression in transgenic plants. Plant J 24:265–273

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Dr. Michael E. Salvucci for critical review of this manuscript, and for providing plasmid containing full-length cDNA encoding AtRCAβ. We thank Dr. Peter B. Goldsbrough for providing Agrobacterium strain GV3850 for plant transformation. This work was supported by grants from the National Science Foundation to B.P.D. (NSF-RUI Molecular and Cellular Biosciences grant no. 0820877 and NSF-MRI grant no. 0820756) and by a Grinnell College Harris Faculty Fellowship to B.P.D. We also acknowledge institutional support from Grinnell College’s Committee for the Support of Faculty Scholarship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Benjamin P. DeRidder.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplemental Fig. S1 (PDF 338 kb)

Supplemental Fig. S2 (PDF 203 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

DeRidder, B.P., Shybut, M.E., Dyle, M.C. et al. Changes at the 3′-untranslated region stabilize Rubisco activase transcript levels during heat stress in Arabidopsis. Planta 236, 463–476 (2012). https://doi.org/10.1007/s00425-012-1623-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-012-1623-0

Keywords

Navigation