Skip to main content
Log in

Strigolactones promote nodulation in pea

  • Rapid Communication
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Strigolactones are recently defined plant hormones with roles in mycorrhizal symbiosis and shoot and root architecture. Their potential role in controlling nodulation, the related symbiosis between legumes and Rhizobium bacteria, was explored using the strigolactone-deficient rms1 mutant in pea (Pisum sativum L.). This work indicates that endogenous strigolactones are positive regulators of nodulation in pea, required for optimal nodule number but not for nodule formation per se. rms1 mutant root exudates and root tissue are almost completely deficient in strigolactones, and rms1 mutant plants have approximately 40% fewer nodules than wild-type plants. Treatment with the synthetic strigolactone GR24 elevated nodule number in wild-type pea plants and also elevated nodule number in rms1 mutant plants to a level similar to that seen in untreated wild-type plants. Grafting studies revealed that nodule number and strigolactone levels in root tissue of rms1 roots were unaffected by grafting to wild-type scions indicating that strigolactones in the root, but not shoot-derived factors, regulate nodule number and provide the first direct evidence that the shoot does not make a major contribution to root strigolactone levels.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

References

  • Beveridge CA (2000) Long-distance signaling and the mutational analysis of branching in pea. J Plant Growth Reg 32:193–203

    Article  CAS  Google Scholar 

  • Beveridge CA, Symons GM, Murfet IC, Ross JJ, Rameau C (1997) The rms1 mutant of pea has elevated indole-3-acetic acid levels and reduced root-sap zeatin riboside content but increased branching controlled by a graft-transmissible signal(s). Plant Physiol 115:1251–1258

    CAS  Google Scholar 

  • Beveridge CA, Dun EA, Rameau C (2009) Pea has its tendrils in branching discoveries spanning a century from auxin to strigolactones. Plant Physiol 151:985–990

    Article  PubMed  CAS  Google Scholar 

  • Catford J-G, Staehelin C, Lerat S, Piche Y, Vierheilig H (2003) Suppression of arbuscular mycorrhizal colonization and nodulation in split-root systems of alfalfa after pre-inoculation and treatment with Nod factors. J Exp Bot 54:1481–1487

    Article  PubMed  CAS  Google Scholar 

  • Ding Y, Kalo P, Yendrek C, Sun J, Marsh JF, Harris JM, Oldroyd GED (2008) Abscisic acid coordinates Nod factor and cytokinin signaling during the regulation of nodulation in Medicago truncatula. Plant Cell 20:2681–2695

    Article  PubMed  CAS  Google Scholar 

  • Domagalska M, Leyser O (2011) Signal integration in the control of shoot branching. Nat Rev 12:211–221

    Article  CAS  Google Scholar 

  • Ferguson BJ, Beveridge CA (2009) Roles for auxin, cytokinin and strigolactone in regulating shoot branching. Plant Physiol 149:1929–1944

    Article  PubMed  CAS  Google Scholar 

  • Ferguson BJ, Ross JJ, Reid JB (2005) Nodulation phenotypes of gibberellin and brassinosteroids mutants of pea. Plant Physiol 138:2396–2405

    Article  PubMed  CAS  Google Scholar 

  • Ferguson BJ, Indrasumunar A, Hayashi S, Lin M-H, Lin Y-H, Reid DE, Gresshoff PM (2010) Molecular analysis of legume nodule development and autoregulation. J Integr Plant Biol 52:61–76

    Article  PubMed  CAS  Google Scholar 

  • Ferguson BJ, Foo E, Ross JJ, Reid JB (2011) Relationship between gibberellin, ethylene and nodulation in pea. New Phytol 189:829–842

    Article  PubMed  CAS  Google Scholar 

  • Fernandez-Aparicio M, Garcia-Garrido JM, Ocampi JA, Rubiales D (2010) Colonisation of field pea roots by arbuscular mycorrhizal fungi reduces Orobanche and Phelipanche species seed germination. Weed Res 50:262–268

    Article  Google Scholar 

  • Foo E, Turnbull CGN, Beveridge CA (2001) Long-distance signaling and the control of branching in the rms1 mutant of pea. Plant Physiol 126:203–209

    Article  PubMed  CAS  Google Scholar 

  • Foo E, Bullier E, Goussot M, Foucher F, Rameau C, Beveridge CA (2005) The branching gene RAMOSUS1 mediates interactions among two novel signals and auxin in pea. Plant Cell 17:464–474

    Article  PubMed  CAS  Google Scholar 

  • Gomez-Roldan V, Fermas S, Brewer PB, Puech-Pages V, Dun EA, Pillot J-P, Letisse F, Matusova R, Danoun S, Portais J-C, Bouwmeester H, Becard G, Beveridge CA, Rameau C, Rochange SF (2008) Strigolactone inhibition of shoot branching. Nature 455:189–195

    Article  PubMed  CAS  Google Scholar 

  • Gonzalez-Rizzo S, Crespi M, Frugier F (2006) The Medicago truncatula CRE1 cytokinin receptor regulates lateral root development and early symbiotic interaction with Sinorhizobium meliloti. Plant Cell 18:2680–2693

    Article  PubMed  CAS  Google Scholar 

  • Hewitt EJ (1966) Sand and water culture: methods used in the study of plant nutrition, 2nd edn. Commonwealth Agricultural Bureau, The Eastern Press, London

  • Kapulnik Y, Resnick N, Mayzllish-Gati E, Kaplan Y, Wininger S, Hershenhorn J, Koltai H (2011a) Strigolactones interact with ethylene and auxin in regulating root-hair elongation in Arabidopsis. J Exp Bot 62:2915–2924

    Article  PubMed  CAS  Google Scholar 

  • Kapulnik Y, Delaux P-M, Resnick N, Mayzlish-Gati E, Wininger S, Bhattacharya C, Sejalon-Delmas N, Combier J-P, Becard G, Belausov E, Beeckman T, Dor E, Hershenhorn J, Koltai H (2011b) Strigolactones affect lateral root formation and root-hair elongation in Arabidopsis. Planta 233:209–216

    Article  PubMed  CAS  Google Scholar 

  • Koltai H, Dor E, Hershenhorn J, Joel D, Weininger S, Lekalla S, Shealtiel H, Bhattacharya C, Eliahu E, Resnick N, Barg R, Kapulnik Y (2010) Strigolactones’ effect on root growth and root hair elongation may be mediated by auxin-efflux carriers. J Plant Growth Reg 29:129–136

    Article  CAS  Google Scholar 

  • Lohar D, Stiller J, Kam J, Stacey G, Gresshoff PM (2009) Ethylene insensitivity conferred by a mutated Arabidopsis ethylene receptor gene alters nodulation in transgenic Lotus japonicus. Ann Bot 104:277–285

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Raez JA, Charnikhova T, Fernandez I, Bouwmeester H, Pozo MJ (2011) Arbuscular mycorrhizal symbiosis decreases strigolactone production in tomato. J Plant Physiol 168:294–297

    Article  PubMed  CAS  Google Scholar 

  • Markmann K, Parniske M (2009) Evolution of root endosymbiosis with bacteria: how novel are nodules? Trends Plant Sci 14:77–86

    Article  PubMed  CAS  Google Scholar 

  • Mathesius U (2008) Auxin: at the root of nodule development? Funct Plant Biol 35:651–668

    Article  CAS  Google Scholar 

  • Moscatiello R, Squartini A, Mariani P, Navazio L (2010) Flavonoid-induced calcium signaling in Rhizobium leguminosarum bv. viciae. New Phytol 188:814–823

    Article  PubMed  CAS  Google Scholar 

  • Nakagawa T, Kawaguchi M (2006) Shoot-applied MeJA suppresses root nodulation in Lotus japonicus. Plant Cell Physiol 47:176–180

    Article  PubMed  CAS  Google Scholar 

  • Parniske M (2008) Arbuscular mycorrhiza: the mother of plant root endosymbioses. Nature Rev 6:763–775

    Article  CAS  Google Scholar 

  • Penmetsa RV, Uribe P, Anderson J, Lichtenzveig J, Gish J-C, Nam YW, Engstrom E, Xu K, Pereira M, Baek JM, Lopez-Meyer M, Long SR, Harrison MJ, Singh KB, Cook DJ (2008) The Medicago truncatula ortholog of Arabidopsis EIN2, sickle, is a negative regulator of symbiotic and pathogenic microbial associations. Plant J 55:580–595

    Article  PubMed  CAS  Google Scholar 

  • Proust H, Hoffmann B, Xie X, Yoneyama K, Schaefer DG, Yoneyama K, Nogue F, Rameau C (2011) Strigolactones regulate protonema branching and act as a quorum sensing-like signal in the moss Physcomitrella patens. Develop 138:1531–1539

    Article  CAS  Google Scholar 

  • Ruyter-Spira C, Kohlen W, Charnikhova T, van Zeiji A, van Bezouwen L, de Ruijter N, Cardoso C, Lopez-Raez JA, Matusova R, Bours R, Verstappen F, Bouwmeester H (2010) Physiological effects of synthetic GR24 on root system architecture in Arabidopsis: another below ground role for strigolactones? Plant Physiol 155:721–734

    Article  PubMed  Google Scholar 

  • Seo HS, Li J. Lee S-Y, Yu J-W, Kim K-H, Lee S-H, Lee I-J, Paek N-C (2007) The hypernodulating nts mutation induces jasmonate synthetic pathway in soybean leaves. Mol Cells 24:185-193

    Google Scholar 

  • Soto MJ, Fernandez-Aparicio M, Castellanos-Morales V, Garcia-Garrido JA, Delgado MJ, Vierheilig H (2010) First indications for the involvement of strigolactones on nodule formation in alfalfa (Medicago sativa). Soil Biol Biochem 42:383–385

    Article  CAS  Google Scholar 

  • Tirichine L, Sandal N, Madsen LH, Radutoiu S, Albrektsen AS, Sato S, Asamizu E, Tabata S, Stougaard J (2007) A gain-of-function mutation in a cytokinin receptor triggers spontaneous root nodule organogenesis. Science 315:104–107

    Article  PubMed  CAS  Google Scholar 

  • Umehara M, Hanada A, Yoshida S, Akiyama K, Arite T, Takeda-Kamiya N, Magome H, Shirasu K, Yoneyama K, Kyozuka J, Yamaguchi S (2008) Inhibition of shoot branching by new terpenoid plant hormones. Nature 455:195–200

    Article  PubMed  CAS  Google Scholar 

  • Xie X, Yoneyama K, Harada Y, Fusegi N, Yamada Y, Ito S, Yokota T, Takeuchi Y, Yoneyama K (2009) Fabacyl acetate, a germination stimulant for root parasitic plants from Pisum sativum. Phytochemisty 70:211–215

    Article  CAS  Google Scholar 

  • Xie X, Yoneyama K, Yoneyama K (2010) The strigolactone story. Ann Rev Phytopathol 48:93–117

    Article  CAS  Google Scholar 

  • Yoneyama K, Xie X, Sekimoto H, Takeuchi Y, Ogasawara S, Akiyama K, Hayashi H, Yoneyama K (2008) Strigolactones, host recognition signals for root parasitic plants and arbuscular mycorrhizal fungi, from Fabaceae plants. New Phytol 179:484–492

    Article  PubMed  CAS  Google Scholar 

  • Zdyb A, Dechenko K, Heumann J, Mrosk C, Grzeganek P, Göbel C, Feusser I, Pawlowski K, Hause B (2011) Jasmonate biosynthesis in legume and actinorhizal nodules. New Phytol 189:568–579

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the support of the Australian Research Council (ARC) Post-doctoral Research Fellowship (DP0772348) and the ARC Linkage Infrastructure and Equipment Funding scheme (LE10010015), which supported the purchase of the UPLC-MS. We would like to thank Anthony Cummings and Ian Cummings for assistance with plant husbandry. We would like to thank A/Prof John Ross and Prof Jim Reid for helpful discussions. Our thanks are due to Dr Christine Beveridge for rms1-2T seed and Dr Brett Ferguson for supply of Rhizobia (University of QLD), and Prof Binne Zwanenburg (Radboud Universty Nijmegen) for supply of GR24. Also, many thanks are due to Prof Koichi Yoneyama (Utsunomiya University) and Dr Kohki Akiyama (Osaka Prefecture University) for their kind gifts of measured quantities of labeled strigolactones.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Eloise Foo.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary Fig. 1 Representative UPLC-MS chromatogram of strigolactones from wild-type root exudate, including endogenous strigolactones and deuterium-labeled internal standards.

Supplementary material 1 (TIFF 2931 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Foo, E., Davies, N.W. Strigolactones promote nodulation in pea. Planta 234, 1073–1081 (2011). https://doi.org/10.1007/s00425-011-1516-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-011-1516-7

Keywords

Navigation