Skip to main content
Log in

The fatal effect of tungsten on Pisum sativum L. root cells: indications for endoplasmic reticulum stress-induced programmed cell death

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Programmed cell death (PCD) is a widespread response of plants against abiotic stress, such as heavy metal toxicity. Tungsten (W) is increasingly considered toxic for plants since it irreversibly affects their growth. Therefore, we investigated whether W could induce some kind of PCD in plants, like other heavy metals do. The morphology of cell and nucleus, the integrity of the cytoskeleton, Evans Blue absorbance and the expression of PCD-related genes were used as indicators of PCD in W-treated roots of Pisum sativum (pea). TEM and fluorescence microscopy revealed mitotic cycle arrest, protoplast shrinkage, disruption of the cytoskeleton and chromatin condensation and peripheral distribution in the nucleus of W-affected cells. Moreover, Evans Blue absorbance in roots increased in relation to the duration of W treatment. These effects were suppressed by inhibitors of the 26S proteasome, caspases and endoplasmic reticulum stress. In addition, silencing of DAD-1 and induction of HSR203J, BiP-D, bZIP28 and bZIP60 genes were also recorded in W-treated pea roots by semi-quantitative RT-PCR. The above observations show that W induces a kind of PCD in pea roots, further substantiating its toxicity for plants. Data imply that endoplasmic reticulum stress-unfolded protein response may be involved in W-induced PCD.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

ER:

Endoplasmic reticulum

ERAD:

ER associated degradation

PCD:

Programmed cell death

PBA:

4-Phenylbutyric acid

UPR:

Unfolded protein response

References

  • Adamakis I-DS, Eleftheriou EP, Rost TL (2008) Effects of sodium tungstate on the ultrastructure and growth of pea (Pisum sativum) and cotton (Gossypium hirsutum) seedlings. Environ Exp Bot 63:416–425

    Article  CAS  Google Scholar 

  • Adamakis I-DS, Panteris E, Eleftheriou EP (2010a) Tungsten affects the cortical microtubules of Pisum sativum root cells: Experiments on tungsten-molybdenum antagonism. Plant Biol 12:114–124

    Article  PubMed  CAS  Google Scholar 

  • Adamakis I-DS, Panteris E, Eleftheriou EP (2010b) The cortical microtubules are a universal target of tungsten toxicity among land plant taxa. J Biol Res 13:59–66

    CAS  Google Scholar 

  • Bézier A, Lambert B, Baillieul F (2002) Study of defense-related gene expression in grapevine leaves infected with Botrytis cinerea. Eur J Plant Pathol 108:111–120

    Article  Google Scholar 

  • Bonneau L, Ge Y, Drury GE, Gallois P (2008) What happened to plant caspases? J Exp Bot 59:491–499

    Article  PubMed  CAS  Google Scholar 

  • Bosch M, Franklin-Tong VE (2007) Temporal and spatial activation of caspase-like enzymes induced by self-incompatibility in Papaver pollen. Proc Natl Acad Sci USA 104:18327–18332

    Article  PubMed  CAS  Google Scholar 

  • Bosch M, Poulter NS, Vatovec S, Franklin-Tong VE (2008) Initiation of programmed cell death in self-incompatibility: role for cytoskeleton modifications and several caspase-like activities. Mol Plant 1:879–887

    Article  PubMed  CAS  Google Scholar 

  • Boyce M, Yuan J (2006) Cellular response to endoplasmic reticulum stress: a matter of life or death. Cell Death Differ 13:363–373

    Article  PubMed  CAS  Google Scholar 

  • Cacas JL (2010) Devil inside: does plant programmed cell death involve the endomembrane system? Plant Cell Environ 33:1453–1473

    PubMed  CAS  Google Scholar 

  • Cascardo JC, Almeida RS, Buzeli RA, Carolino SM, Otoni WC, Fontes EP (2000) The phosphorylation state and expression of soybean BiP isoforms are differentially regulated following abiotic stresses. J Biol Chem 275:14494–14500

    Article  PubMed  CAS  Google Scholar 

  • Chen PY, Lee KT, Chi WC, Hirt H, Chang CC, Huang HJ (2008) Possible involvement of MAP kinase pathways in acquired metal-tolerance induced by heat in plants. Planta 228:499–509

    Article  PubMed  CAS  Google Scholar 

  • Clausen JL, Korte N (2009) Environmental fate of tungsten from military use. Sci Total Environ 407:2887–2893

    Article  PubMed  CAS  Google Scholar 

  • Danon A, Rotari VI, Gordon A, Mailhac N, Gallois P (2004) Ultraviolet-C overexposure induces programmed cell death in Arabidopsis, which is mediated by caspase-like activities and which can be suppressed by caspase inhibitors, p35 and defender against apoptotic death. J Biol Chem 279:779–787

    Article  PubMed  CAS  Google Scholar 

  • Dho S, Camusso W, Mucciarelli M, Fusconi A (2010) Arsenate toxicity on the apices of Pisum sativum L. seedling roots: effects on mitotic activity, chromatin integrity and microtubules. Environ Exp Bot 69:17–23

    Article  CAS  Google Scholar 

  • Dinneny JR, Long TA, Wang JY, Mace D, Pointer S, Barron C, Brady SM, Schiefelbein J, Benfey PN (2008) Cell identity mediates the response of Arabidopsis roots to abiotic stress. Science 32:942–945

    Article  Google Scholar 

  • Duan Y, Zhang W, Li B, Wang Y, Li K, Sodmergen, Han C, Zhang Y, Li X (2010) An endoplasmic reticulum response pathway mediates programmed cell death of root tip induced by water stress in Arabidopsis. New Phytol 186:681–695

  • Elbaz M, Avni A, Weil M (2002) Constitutive caspase-like machinery executes programmed cell death in plant cells. Cell Death Differ 9:726–733

    Article  PubMed  CAS  Google Scholar 

  • Grimm LM, Osborne BA (1999) Apoptosis and the proteasome. Results Probl Cell Differ 23:209–228

    PubMed  CAS  Google Scholar 

  • Gunawardena AHLAN, Greenwood JS, Dengler NG (2004) Programmed cell death remodels lace plant leaf shape during development. Plant Cell 16:60–73

    Article  PubMed  CAS  Google Scholar 

  • Hatsugai N, Iwasaki S, Tamura K, Kondo M, Fuji K, Ogasawara K, Nishimura M, Nishimura IH (2009) A novel membrane fusion-mediated plant immunity against bacterial pathogens. Genes Dev 23:2496–2506

    Article  PubMed  CAS  Google Scholar 

  • He X, Kermode AR (2010) Programmed cell death of the megagametophyte during post-germinative growth of white spruce (Picea glauca) seeds is regulated by reactive oxygen species and the ubiquitin-mediated proteolytic system. Plant Cell Physiol 51:1707–1720

    Article  PubMed  CAS  Google Scholar 

  • Iakimova ET, Woltering EJ, Kapchina-Toteva VM, Harren FJM, Cristescu SM (2008) Cadmium toxicity in cultured tomato cells—role of ethylene, proteases and oxidative stress in cell death signaling. Cell Biol Int 32:1521–1529

    Article  PubMed  CAS  Google Scholar 

  • Iwata Y, Koizumi N (2005a) An Arabidopsis transcription factor, AtbZIP60, regulates the endoplasmic reticulum stress response in a manner unique to plants. Proc Natl Acad Sci USA 102:5280–5285

    Article  PubMed  CAS  Google Scholar 

  • Iwata Y, Koizumi N (2005b) Unfolded protein response followed by induction of cell death in cultured tobacco cells treated with tunicamycin. Planta 220:804–807

    Article  PubMed  CAS  Google Scholar 

  • Iwata Y, Fedoroff NV, Koizumi N (2008) Arabidopsis bZIP60 is a proteolysis-activated transcription factor involved in the endoplasmic reticulum stress response. Plant Cell 20:3107–3121

    Article  PubMed  CAS  Google Scholar 

  • Kamauchi S, Nakatani H, Nakano C, Urade R (2005) Gene expression in response to endoplasmic reticulum stress in Arabidopsis thaliana. FEBS J 272:3461–3476

    Article  PubMed  CAS  Google Scholar 

  • Karagiannidou T, Eleftheriou EP, Tsekos I, Galatis B, Apostolakos P (1995) Colchicine-induced paracrystals in root cells of wheat (Triticum aestivum L.). Ann Bot 76:23–30

    Article  CAS  Google Scholar 

  • Kim M, Ahn JW, Jin UH, Choi D, Paek KH, Pai HS (2003) Activation of the programmed cell death pathway by inhibition of proteasome function in plants. J Biol Chem 278:19406–19415

    Article  PubMed  CAS  Google Scholar 

  • Kisselev AF, Garcia-Calvo M, Overkleeft HS, Peterson E, Pennington MW, Ploegh HL, Thornberry NA, Goldberg AL (2003) The caspase-like sites of proteasomes, their substrate specificity, new inhibitors and substrates, and allosteric interactions with the trypsin-like sites. J Biol Chem 278:35869–35877

    Article  PubMed  CAS  Google Scholar 

  • Koutsospyros A, Braida W, Christodoulatos C, Dermatas D, Strigul N (2006) A review of tungsten: from environmental obscurity to scrutiny. J Hazard Mater 136:1–19

    Article  PubMed  CAS  Google Scholar 

  • Kuthanova A, Fischer L, Nick P, Opatrny Z (2008) Cell cycle phase-specific death response of tobacco BY-2 cell line to cadmium treatment. Plant Cell Environ 31:1634–1643

    Article  PubMed  CAS  Google Scholar 

  • Lam E, Pontier D, del Pozo O (1999) Die and let live - programmed cell death in plants. Curr Opin Plant Biol 2:502–507

    Article  PubMed  CAS  Google Scholar 

  • Liao Y, Zou HF, Wei W, Hao YJ, Tian AG, Huang J, Liu YF, Zhang JS, Chen SY (2008) Soybean GmbZIP44, GmbZIP62 and GmbZIP78 genes function as negative regulator of ABA signaling and confer salt and freezing tolerance in transgenic Arabidopsis. Planta 228:225–240

    Article  PubMed  CAS  Google Scholar 

  • Lindholm P, Kuittinen T, Sorri O, Guo D, Merits A, Tormakangas K, Runeberg-Roos P (2000) Glycosylation of phytepsin and expression of dad1, dad2 and ost1 during onset of cell death in germinating barley scutellum. Mech Dev 93:169–173

    Article  PubMed  CAS  Google Scholar 

  • Liu JX, Srivastava R, Che P, Howell SH (2007) An endoplasmic reticulum stress response in Arabidopsis is mediated by proteolytic processing and nuclear relocation of a membrane associated transcription factor, bZIP28. Plant Cell 19:4111–4119

    Article  PubMed  CAS  Google Scholar 

  • Lord CEN, Gunawardena AHLAN (2011) Environmentally induced programmed cell death in leaf protoplasts of Aponogeton madagascariensis. Planta 233:407–421

    Article  PubMed  CAS  Google Scholar 

  • Lu DP, Christopher DA (2008) Endoplasmic reticulum stress activates the expression of a sub-group of protein disulfide isomerase genes and AtbZIP60 modulates the response in Arabidopsis thaliana. Mol Genet Genomics 280:199–210

    Article  PubMed  CAS  Google Scholar 

  • Mlejnek P, Procházka S (2002) Activation of caspase-like proteases and induction of apoptosis by isopentenyladenosine in tobacco BY-2 cells. Planta 215:158–166

    Article  PubMed  CAS  Google Scholar 

  • Noh SJ, Kwon CS, Oh DH, Moon JS, Chung WI (2003) Expression of an evolutionarily distinct novel BiP-D gene during the unfolded protein response in Arabidopsis thaliana. Gene 311:81–91

    Article  PubMed  CAS  Google Scholar 

  • Oono Y, Wakasa Y, Hirose S, Yang L, Sakuta C, Takaiwa F (2010) Analysis of ER stress in developing rice endosperm accumulating β-amyloid peptide. Plant Biotechnol J 8:691–718

    Article  PubMed  CAS  Google Scholar 

  • Orzáez D, Granell A (1997) The plant homologue of the defender against apoptotic death gene is down-regulated during senescence of flower petals. FEBS Lett 404:275–278

    Article  PubMed  Google Scholar 

  • Osterburg AR, Robinson CT, Schwemberger S, Mokashi V, Stockelman M, Babcock GF (2010) Sodium tungstate (Na2WO4) exposure increases apoptosis in human peripheral blood lymphocytes. J Immunotoxicol 7:174–182

    Article  PubMed  CAS  Google Scholar 

  • Pan JW, Zhu MY, Chen H (2001) Aluminum-induced cell death in root-tip cells of barley. Environ Exp Bot 46:71–79

    Article  PubMed  CAS  Google Scholar 

  • Panteris E, Galatis B, Quader H, Apostolakos P (2007) Cortical actin filament organization in developing and functioning stomatal complexes of Zea mays and Triticum turgidum. Cell Motil Cytoskelet 64:531–548

    Article  Google Scholar 

  • Pontier D, Tronchet M, Rogowsky P, Lam E, Roby D (1998) Activation of hsr203j, a plant gene expressed during incompatible plant-pathogen interactions, is correlated with programmed cell death. Mol Plant Microbe Interact 11:544–554

    Article  PubMed  CAS  Google Scholar 

  • Pontier D, del Poso O, Lam E (2004) Cell death in plant disease: mechanisms and molecular markers. In: Nooden LD (ed) Plant cell death processes. Elsevier Academic Press, San Diego, pp 37–50

    Google Scholar 

  • Poulter NS, Vatovec S, Franklin-Tong VE (2008) Microtubules are a target for self-incompatibility signaling in Papaver pollen. Plant Physiol 146:1358–1367

    Article  PubMed  CAS  Google Scholar 

  • Přibyl P, Cepák V, Zachleder V (2008) Cytoskeletal alterations in interphase cells of the green alga Spirogyra decimina in response to heavy metals exposure: II. The effect of aluminium, nickel and copper. Toxicol In Vitro 22:1160–1168

    Article  PubMed  Google Scholar 

  • Reape TJ, Molony EM, McCabe PF (2008) Programmed cell death in plants: distinguishing between different modes. J Exp Bot 59:435–444

    Article  PubMed  CAS  Google Scholar 

  • Rotari VI, He R, Gallois P (2005) Death by proteases in plants: whodunit. Physiol Plant 123:376–385

    Article  CAS  Google Scholar 

  • Schröder M, Kaufman RJ (2005) ER stress and the unfolded protein response. Mutat Res 569:29–63

    PubMed  Google Scholar 

  • Steinberg KK, Relling MV, Gallagher ML, Greene CN, Rubin CS, French D, Holmes AK, Carroll WL, Koontz DA, Sampson EJ, Satten GA (2007) Genetic studies of a cluster of acute lymphoblastic leukaemia cases in Churchill County, Nevada. Environ Health Persp 115:158–164

    Article  CAS  Google Scholar 

  • Suarez MF, Filonova LH, Smertenko A, Savenkov EI, Clapham DH, von Arnold S, Zhivotovsky B, Bozhkov PV (2004) Metacaspase-dependent programmed cell death is essential for plant embryogenesis. Curr Biol 14:R339–R340

    Article  PubMed  CAS  Google Scholar 

  • Sundström JF, Vaculova A, Smertenko AP, Savenkov EI, Golovko A, Minina E, Tiwari BS, Rodriguez-Nieto S, Zamyatnin AA, Välineva T, Saarikettu J, Frilander MJ, Suarez MF, Zavialov A, Ståhl U, Hussey PJ, Silvennionen O, Sundberg E, Zhivotovsky B, Bozhkov PV (2009) Tudor staphylococcal nuclease is an evolutionarily conserved component of the programmed cell death degradome. Nat Cell Biol 11:1347–1354

    Article  PubMed  Google Scholar 

  • Tajima H, Iwata Y, Iwano M, Takayama S, Koizumi N (2008) Identification of an Arabidopsis transmembrane bZIP transcription factor involved in the endoplasmic reticulum stress response. Biochem Biophys Res Commun 374:242–247

    Article  PubMed  CAS  Google Scholar 

  • Tamas L, Budikova S, Huttova J, Mistrik I, Simonovicova M, Siroka B (2005) Aluminium-induced cell death of barley-root border cells is correlated with peroxidase- and oxalate oxidase-mediated hydrogen peroxide production. Plant Cell Rep 24:189–194

    Article  PubMed  CAS  Google Scholar 

  • Tanaka Y, Makishima T, Sasabe M, Ichinose Y, Shiraishi T, Nishimoto T, Yamada T (1997) DAD-1, a putative programmed cell death suppressor gene in rice. Plant Cell Physiol 38:379–383

    PubMed  CAS  Google Scholar 

  • Urade R (2007) Cellular response to unfolded proteins in the endoplasmic reticulum of plants. FEBS J 274:1152–1171

    Article  PubMed  CAS  Google Scholar 

  • Urade R (2009) The endoplasmic reticulum stress signalling pathways in plants. BioFactors 35:326–331

    Article  PubMed  CAS  Google Scholar 

  • Vacca RA, Valenti D, Bobba A, de Pinto MC, Merafina RS, De Gara L, Passarella S, Marra E (2007) Proteasome function is required for activation of programmed cell death in heat shocked tobacco Bright-Yellow 2 cells. FEBS Lett 581:917–922

    Article  PubMed  CAS  Google Scholar 

  • Valenti D, Vacca RA, Guaragnella N, Passarella S, Marra E, Giannattasio S (2008) A transient proteasome activation is needed for acetic acid-induced programmed cell death to occur in Saccharomyces cerevisiae. FEMS Yeast Res 8:400–404

    Article  PubMed  CAS  Google Scholar 

  • van der Kop DAM, Ruys G, Dees D, van der Schoot C, de Boer AD, van Doorn WG (2003) Expression of defender against apoptotic death (DAD-1) in Iris and Dianthus petals. Physiol Plant 117:256–263

    Article  Google Scholar 

  • Watanabe N, Lam E (2008) BAX inhibitor-1 modulates endoplasmic reticulum stress-mediated programmed cell death in Arabidopsis. J Biol Chem 238:3200–3210

    Google Scholar 

  • Wiley JC, Meabon JS, Frankowski H, Smith EA, Schecterson LC, Bothwell M, Ladiges WC (2010) Phenylbutyric acid rescues endoplasmic reticulum stress-induced suppression of APP proteolysis and prevents apoptosis in neuronal cells. PlosONE 5:e9135

    Google Scholar 

  • Wilson B, Pyatt FB (2006) Bio-availability of tungsten in the vicinity of an abandoned mine in the English Lake District and some potential health implications. Sci Total Environ 370:401–408

    Article  PubMed  CAS  Google Scholar 

  • Xiong J, Lu H, Lu K, Duan Y, Zhu C (2009) Cadmium decreases crown root number by decreasing endogenous nitric oxide, which is indispensable for crown root primordia initiation in rice seedlings. Planta 230:599–610

    Article  PubMed  CAS  Google Scholar 

  • Yamada T, Takatsu Y, Kasumi M, Marubashi W, Ichimura K (2004) A homolog of the defender against apoptotic death gene (DAD1) in senescing gladiolus petals is down-regulated prior to the onset of programmed cell death. J Plant Physiol 161:1281–1283

    Article  PubMed  CAS  Google Scholar 

  • Zuppini A, Navazio L, Mariani P (2004) Endoplasmic reticulum stress-induced programmed cell death in soybean cells. J Cell Sci 117:2591–2598

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We are grateful to Dr. Dimitra Papaefthimiou, Institute of Agrobiotechnology, CERTH, Thessaloniki, for assistance with primer designing and helpful suggestions concerning the PCR experiments. Dr. Anastasia Tsingotjidou, Faculty of Veterinary Medicine of Aristotle University, cordially provided access to the Nikon D-Eclipse C1 CLSM. We also thank the anonymous reviewers for their constructive suggestions and comments.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Ioannis-Dimosthenis S. Adamakis or Emmanuel Panteris.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 11676 kb)

Rights and permissions

Reprints and permissions

About this article

Cite this article

Adamakis, ID.S., Panteris, E. & Eleftheriou, E.P. The fatal effect of tungsten on Pisum sativum L. root cells: indications for endoplasmic reticulum stress-induced programmed cell death. Planta 234, 21–34 (2011). https://doi.org/10.1007/s00425-011-1372-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-011-1372-5

Keywords

Navigation