Skip to main content
Log in

Regulation of the gibberellin pathway by auxin and DELLA proteins

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

The synthesis and deactivation of bioactive gibberellins (GA) are regulated by auxin and by GA signalling. The effect of GA on its own pathway is mediated by DELLA proteins. Like auxin, the DELLAs promote GA synthesis and inhibit its deactivation. Here, we investigate the relationships between auxin and DELLA regulation of the GA pathway in stems, using a pea double mutant that is deficient in DELLA proteins. In general terms our results demonstrate that auxin and DELLAs independently regulate the GA pathway, contrary to some previous suggestions. The extent to which DELLA regulation was able to counteract the effects of auxin regulation varied from gene to gene. For Mendel’s LE gene (PsGA3ox1) no counteraction was observed. However, for another synthesis gene, a GA 20-oxidase, the effect of auxin was weak and in WT plants appeared to be completely over-ridden by DELLA regulation. For a key GA deactivation (2-oxidase) gene, PsGA2ox1, the up-regulation induced by auxin deficiency was reduced to some extent by DELLA regulation. A second pea 2-oxidase gene, PsGA2ox2, was up-regulated by auxin, in a DELLA-independent manner. In Arabidopsis also, one 2-oxidase gene was down-regulated by auxin while another was up-regulated. Monitoring the metabolism pattern of GA20 showed that in Arabidopsis, as in pea, auxin can promote the accumulation of bioactive GA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

GA:

Gibberellin

HPLC:

High performance liquid chromatography

References

  • Desgagne-Penix I, Sponsel VM (2008) Expression of gibberellin 20-oxidase1 (AtGA20ox1) in Arabidopsis seedlings with altered auxin status is regulated at multiple levels. J Exp Bot 59:2057–2070

    Article  CAS  PubMed  Google Scholar 

  • Elliott RC, Ross JJ, Smith JL, Lester DR, Reid JB (2001) Feed-forward regulation of gibberellin deactivation in pea. J Plant Growth Regul 20:87–94

    Article  CAS  Google Scholar 

  • Foo E, Buillier E, Goussot M, Foucher F, Rameau C, Beveridge CA (2005) The branching gene RAMOSUS1 mediates interactions among two novel signals and auxin in pea. Plant Cell 17:464–474

    Article  CAS  PubMed  Google Scholar 

  • Frigerio M, Alabadi D, Perez-Gomez J, Garcia-Carcel L, Phillips AL, Hedden P, Blazquez MA (2006) Transcriptional regulation of gibberellin metabolism genes by auxin signaling in Arabidopsis. Plant Physiol 142:553–563

    Article  CAS  PubMed  Google Scholar 

  • Harberd NP, King KE, Carol P, Cowling RJ, Peng J, Richards DE (1998) Gibberellin: inhibitor of an inhibitor of…? BioEssays 20:1001–1008

    Article  CAS  PubMed  Google Scholar 

  • Hedden P, Croker SJ (1992) Regulation of gibberellin biosynthesis in maize seedlings. In: Karssen CM, Van Loon LC, Vreugenhil D (eds) Progress in plant growth regulation. Kluwer, Dordrecht, pp 534–544

    Google Scholar 

  • Ingram TJ, Reid JB, Murfet IC, Gaskin P, Willis CL, MacMillan J (1984) Internode length in Pisum. The Le gene controls the 3ß-hydroxylation of gibberellin A20 to gibberellin A1. Planta 160:454–463

    Article  Google Scholar 

  • Jager CE, Symons GM, Ross JJ, Smith JJ, Reid JB (2005) The brassinosteroid growth response in pea is not mediated by changes in gibberellin content. Planta 221:141–148

    Article  CAS  PubMed  Google Scholar 

  • Jones SE, DeMeo JS, Davies NW, Noonan SE, Ross JJ (2005) Stems of the Arabidopsis pin1-1 mutant are not deficient in free indole-3-acetic acid. Planta 222:530–534

    Article  CAS  PubMed  Google Scholar 

  • Lester DR, Ross JJ, Davies PJ, Reid JB (1997) Mendel’s stem length gene (Le) encodes a gibberellin 3β-hydroxylase. Plant Cell 9:1435–1443

    Article  CAS  PubMed  Google Scholar 

  • Lester DR, Ross JJ, Smith JJ, Elliott RC, Reid JB (1999) Gibberellin 2-oxidation and the SLN gene of Pisum sativum. Plant J 19:65–73

    Article  CAS  PubMed  Google Scholar 

  • Martin DN, Proebsting WM, Parks TD, Dougherty WG, Lange T, Lewis MJ, Gaskin P, Hedden P (1996) Feed-back regulation of gibberellin biosynthesis and gene expression in Pisum sativum L. Planta 200:159–166

    Article  CAS  PubMed  Google Scholar 

  • McKay MJ, Ross JJ, Lawrence NL, Cramp RE, Beveridge CA, Reid JB (1994) Control of internode length in Pisum sativum. Further evidence for the involvement of indole-3-acetic acid. Plant Physiol 106:1521–1526

    CAS  PubMed  Google Scholar 

  • Mitchum MG, Yamaguchi S, Hanada A, Kuwahara A, Yoshioka Y, Kato T, Tabata S, Kamiya Y, Sun TP (2006) Distinct and overlapping roles of two gibberellin 3-oxidases in Arabidopsis development. Plant J 45:804–818

    Article  CAS  PubMed  Google Scholar 

  • O’Neill DP, Ross JJ (2002) Auxin regulation of the gibberellin pathway in pea. Plant Physiol 130:1974–1982

    Article  PubMed  Google Scholar 

  • Ozga JA, Yu J, Reinecke DM (2003) Pollination-, development-, and auxin-specific regulation of gibberellin 3β-hydroxylase gene expression in pea fruit and seed. Plant Physiol 131:1137–1146

    Article  CAS  PubMed  Google Scholar 

  • Ozga JA, Reinecke DM, Aylele BT, Ngo P, Nadeau C, Wickramarathna AD (2009) Developmental and hormonal regulation of gibberellin biosynthesis and catabolism in pea fruit. Plant Physiol 150:448–462

    Article  CAS  PubMed  Google Scholar 

  • Reid JB, Murfet IC, Potts WC (1983) Internode length in Pisum. II. Additional information on the relationship and action of loci Le, La, Cry, Na and Lm. J Exp Bot 34:349–364

    Article  Google Scholar 

  • Rieu I, Eriksson S, Powers SJ, Gong F, Griffiths J, Woolley L, Benlloch R, Nilsson O, Thomas SG, Hedden P, Phillips AL (2008a) Genetic analysis reveals that C19-GA 2-oxidation is a major gibberellin inactivation pathway in Arabidopsis. Plant Cell 20:2420–2436

    Article  CAS  PubMed  Google Scholar 

  • Rieu I, Ruiz-Rivero O, Fernandez-Garcia N, Griffiths J, Powers SJ, Gong F, Linhartova T, Eriksson S, Nilsson O, Thomas SG, Phillips AL, Hedden P (2008b) The gibberellin biosynthetic genes AtGA20ox1 and AtGA20ox2 act, partially redundantly, to promote growth and development throughout the Arabidopsis life cycle. Plant J 53:488–504

    Article  CAS  PubMed  Google Scholar 

  • Ross JJ (1998) Effects of auxin transport inhibitors on gibberellins in pea. J Plant Growth Regul 17:141–146

    Article  CAS  Google Scholar 

  • Ross JJ, Reid JB, Swain SM, Hasan O, Poole AT, Hedden P, Willis CL (1995) Genetic regulation of gibberellin deactivation in Pisum. Plant J 7:513–523

    Article  CAS  Google Scholar 

  • Ross JJ, MacKenzie-Hose AK, Davies PJ, Lester DR, Twitchin B, Reid JB (1999) Further evidence for feedback regulation of gibberellin biosynthesis in pea. Physiol Plant 105:532–538

    Article  CAS  Google Scholar 

  • Ross JJ, O’Neill DP, Smith JJ, Kerckhoffs LHJ, Elliot RC (2000) Evidence that auxin promotes gibberellin A1 biosynthesis in pea. Plant J 21:547–552

    Article  CAS  PubMed  Google Scholar 

  • Ross JJ, O’Neill DP, Rathbone DA (2003) The auxin-gibberellin interaction in pea: integrating the old with the new. J Plant Growth Regul 22:99–108

    Article  CAS  Google Scholar 

  • Shimada Y, Goda H, Nakamura A, Takatsuto S, Fujioka S, Yoshida S (2003) Organ-specific expression of brassinosteroid-biosynthetic genes and distribution of endogenous brassinosteroids in Arabidopsis. Plant Physiol 131:287–297

    Article  CAS  PubMed  Google Scholar 

  • Smith VA, Knatt CJ, Gaskin P, Reid JB (1992) The distribution of gibberellins in vegetative tissues of Pisum sativum L.: I. Biological and biochemical consequences of the le mutation. Plant Physiol 99:368–371

    Article  CAS  PubMed  Google Scholar 

  • Soga K, Wakabayashi K, Hoson T, Kamisaka S (2000) Flower stalk segments of Arabidopsis thaliana ecotype Columbia lack the capacity to grow in response to exogenously applied auxin. Plant Cell Physiol 41:1327–1333

    Article  CAS  PubMed  Google Scholar 

  • Sun TP, Gubler F (2004) Molecular mechanism of gibberellin signaling in plants. Annu Rev Plant Biol 55:197–223

    Article  CAS  PubMed  Google Scholar 

  • Thomas SG, Phillips AL, Hedden P (1999) Molecular cloning and functional expression of gibberellin 2-oxidases, multifunctional enzymes involved in gibberellin deactivation. Proc Natl Acad Sci USA 96:4698–4703

    Article  CAS  PubMed  Google Scholar 

  • Weston DE, Elliott RC, Lester DE, Rameau C, Reid JB, Murfet IC, Ross JJ (2008) The pea (Pisum sativum) DELLA proteins LA and CRY are important regulators of gibberellin synthesis and root growth. Plant Physiol 147:199–205

    Article  CAS  PubMed  Google Scholar 

  • Weston DE, Reid JB, Ross JJ (2009) Auxin regulation of gibberellin biosynthesis in the roots of pea (Pisum sativum L.). Funct Plant Biol 36:362–369

    Article  CAS  Google Scholar 

  • Yamaguchi S (2008) Gibberellin metabolism and its regulation. Annu Rev Plant Biol 59:225–251

    Article  CAS  PubMed  Google Scholar 

  • Yamauchi Y, Ogawa M, Kuwahara A, Hanada A, Kamiya Y, Yamaguchi S (2004) Activation of gibberellin biosynthesis and response pathways by low temperature during imbibition of Arabidopsis thaliana seeds. Plant Cell 16:367–378

    Article  CAS  PubMed  Google Scholar 

  • Zentella R, Zhang Z, Park M, Thomas SG, Endo A, Murase K, Fleet CM, Jikumaru Y, Nambara E, Kamiya Y, Sun T-p (2007) Global analysis of DELLA direct targets in early gibberellin signaling in Arabidopsis. Plant Cell 19:3037–3057

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Atsushi Hanada, Kieran Uren, Patricia Salter, Jennifer Smith and Michelle Bauer for technical assistance, Professor Lewis Mander (ANU, Canberra) for labelled GAs, and Gregory Jordan for assistance with statistical analyses. This work was supported by the Australian Research Council. DPO was the recipient of a Research Fellowship funded by the Japan Society for the Promotion of Science.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John J. Ross.

Rights and permissions

Reprints and permissions

About this article

Cite this article

O’Neill, D.P., Davidson, S.E., Clarke, V.C. et al. Regulation of the gibberellin pathway by auxin and DELLA proteins. Planta 232, 1141–1149 (2010). https://doi.org/10.1007/s00425-010-1248-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-010-1248-0

Keywords

Navigation