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Abstract Abiotic stresses such as cold, water deficit, and

salt stresses severely reduce crop productivity. Tomato

(Solanum lycopersicum) is an important economic crop;

however, not much is known about its stress responses. To

gain insight into stress-responsive gene regulation in

tomato plants, we identified transcription factors from a

tomato cDNA microarray. An ABA-responsive element

binding protein (AREB) was identified and named SlAREB.

In tomato protoplasts, SlAREB transiently transactivated

luciferase reporter gene expression driven by AtRD29A

(responsive to dehydration) and SlLAP (leucine amino-

peptidase) promoters with exogenous ABA application,

which was suppressed by the kinase inhibitor staurosporine,

indicating that an ABA-dependent post-translational

modification is required for the transactivation ability of

SlAREB protein. Electrophoretic mobility shift assays

showed that the recombinant DNA-binding domain of

SlAREB protein is able to bind AtRD29A and SlLAP pro-

moter regions. Constitutively expressed SlAREB increased

tolerance to water deficit and high salinity stresses in both

Arabidopsis and tomato plants, which maintained PSII and

membrane integrities as well as water content in plant

bodies. Overproduction of SlAREB in Arabidopsis thaliana

and tomato plants regulated stress-related genes AtRD29A,

AtCOR47, and SlCI7-like dehydrin under ABA and abiotic

stress treatments. Taken together, these results show that

SlAREB functions to regulate some stress-responsive genes

and that its overproduction improves plant tolerance to

water deficit and salt stress.
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SlAREB Solanum lycopersicum ABA-responsive

element binding protein

RD29A Responsive to dehydration 29A

LAP Leucine aminopeptidase

CI7 Cold-induced 7

Introduction

Plant growth and productivity are severely affected by

various abiotic stresses including drought, salinity, extreme

temperature, and heavy metals. Being sessile in nature,

plants respond and adapt to these environmental stresses by

altering the biochemical, physiological, and transcriptional

activation of several stress-responsive genes (Shinozaki

and Yamaguchi-Shinozaki 2000). Thus, increased infor-

mation about stress-related gene regulation at the tran-

scriptome level will greatly facilitate target gene selection

and engineering of stress-tolerant transgenic plants

(Shinozaki and Yamaguchi-Shinozaki 2000; Chinnusamy

et al. 2004). Over the past few years, cDNA and oligonu-

cleotide microarrays (e.g., Affymetrix GeneChip micro-

arrays) have been utilized as a high-throughput detection

system to rapidly identify stress-regulated genes from

global expression profiles (Zhu 2001; Seki et al. 2004;

Rensink and Buell 2005). Gene expression profiles of rice

(Oryza sativa), barley (Hordeum vulgare), and yeast

(Saccharomyces cerevisiae) under saline stress have suc-

cessfully been obtained by microarray analyses demon-

strating the feasibility of this approach (Kawasaki et al.

2001; Yale and Bohnert 2001; Oztur et al. 2002). Similarly,

transcriptome changes in Arabidopsis and rice subjected to

cold, drought, or saline conditions have been investigated

by the use of DNA microarrays (Rabbani et al. 2003;

Takahashi et al. 2004). Although significant progress has

been made in recent years, the available information about

mechanisms of plant responses to abiotic stresses in tomato

plants is still scarce in comparison with Arabidopsis.

Tomato is a member of the Solanaceae family, economi-

cally the third most important commercial crop family, and

has long been used as a model plant in fruit ripening,

disease response, genetics, and whole genome sequence

studies (Mueller et al. 2005). Global expression profiling

will facilitate understanding of the transcriptional regula-

tion of stress-responsive genes and highlight useful genes

for improving stress tolerance in tomato.

Plants encode a large number of transcription factors

which are classified by their DNA-binding domains

(Stracke et al. 2001). There is growing evidence that these

transcription factors regulate diverse biological processes

such as pathogen defense, light and stress signaling, seed

maturation, and flower development (Jakoby et al. 2002).

The levels of endogenous abscisic acid (ABA) increase

significantly in many plants under abiotic stresses. In one

of the ABA-dependent pathways, water-stress-inducible

genes, such as AtRD29A and AtCOR47, contain potential

ABREs (ABA-responsive elements, PyACGTGG) in their

promoter regions. Arabidopsis ABF2 (ABRE-binding

factor 2)/AREB1 (ABA-response element binding factor 1)

(At1g45249), ABF4/AREB2 (At3g19290), and AREB3

(At3g56850) have been identified by a yeast one-hybrid

system to interact with ABREs in vitro (Uno et al. 2000).

Expressions of AREB1, AREB2, and AREB3 genes are

induced by drought, salt, and ABA treatments in vegetative

tissues (Uno et al. 2000). In Arabidopsis protoplasts, both

AREB1 and AREB2 transiently transactivate ABRE-

containing promoters in an ABA-dependent manner (Uno

et al. 2000). Furthermore, ABA-induced phosphorylations

of AREBs through SnRKs (SNF1-related protein kinases)

are important for activation of ABA-responsive genes by

AREBs (Yoshida et al. 2002; Furihata et al. 2006; Fujii and

Zhu 2009). It has been shown that AREB1 functions as a

prerequisite for seedling growth regulation and glucose

response, conferring tolerance to multiple stresses,

including drought, salt, heat, and oxidative stresses, sug-

gesting that AREB1 plays a vital role in adaptation to these

stresses (Kim et al. 2004; Fujita et al. 2005). In comparison

with AREB1, overproduction of ABF3 and AREB2 result

in enhanced ABA, salt and glucose sensitivities, and

drought tolerance, demonstrating that ABF3 and AREB2

play distinct roles in ABA and stress responses under

specific conditions (Kim et al. 2004). In addition, other

homologs of AREB have been identified: TRAB1 (tran-

scription factor responsible for ABA regulation 1) in rice

(Oryza sativa) and HvABI5 in barley (Hordeum vulgare),

which are both involved in ABA-mediated gene regulation;

and Wabi5 in wheat (Triticum aestivum), which confers

tolerance to freezing, osmotic, and salt stresses in trans-

genic tobacco plants (Hobo et al. 1999; Casaretto and Ho

2005; Kobayashi et al. 2008). In Arabidopsis, functional

characterization of AREB1 and AREB2 under ABA,

drought, and high salinity stresses have been well demon-

strated (Uno et al. 2000; Narusaka et al. 2003); however,

the function of tomato AREB and its regulation at the

transcriptional level in tomato plants under stress condi-

tions are not clearly understood.

Plant physiologists are defining tolerance to drought as

the ability to overcome a low tissue water potential during

desiccation (Chaves et al. 2003). Plants use more than one

drought-resistance strategy at a time to resist dehydration

stress, including drought escape via a short life cycle or

developmental plasticity, drought avoidance, and drought

tolerance. Drought avoidance refers to adaptive mecha-

nisms that aim to protect tissue by saving water (e.g., by
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reduction of transpiration through stomatal closure,

reduced leaf size, altered leaf structure, leaf abscission, and

thick cuticles) and reaching more water (e.g., by forming

deep wide-spreading root systems). The mechanisms of

drought tolerance are maintenance of turgor through

osmotic adjustment (solute and/or osmolyte accumulation),

increased cell wall rigidity, and reduced cell size. In this

article, we will use the term tolerance to refer to plants that

seem unaffected by the abiotic stress we apply.

In this study, we identified an AREB-like transcription

factor (accession number: AY530758), SlAREB, by use of

a tomato cDNA microarray (Liu et al. 2006). SlAREB

showed temporal and spatial abiotic stress response and is

involved in an ABA-dependent stress signaling pathway in

tomato. Overexpression of SlAREB in transgenic Arabid-

opsis and tomato plants significantly increases tolerance to

water deficit and salt stresses, as well as regulation of

stress-related genes under ABA and stress treatments.

Materials and methods

Plant growth and stress treatments

Seeds of Solanum lycopersicum (L.) Miller cv. CL5915-

93D4-1-0-3, were kindly provided by the World Vegetable

Center (AVRDC, Shanhua, Taiwan). Wild-type plants

were grown in controlled environment chambers at 24�C,

50% relative humidity, with a 16-h photoperiod (about

120 lmol m-2 s-1).

For the investigation of SlAREB expression profiles,

6-week-old wild-type tomato plants, cultured in a hydro-

ponic system, were transferred to pre-chilled Hoagland’s

solution and incubated at 4�C for chilling treatment,

air-dried in the growth chamber after removal from

Hoagland’s solution for water deficit treatment, or incu-

bated at 200 mM NaCl in Hoagland’s solution for salt

treatment. The incubation time of each treatment was 0.5,

1, 2, 12, and 24 h, respectively, after which leaves and

roots were collected separately.

RNA isolation and Northern-blot analysis

Total RNA was isolated from normal-growth and stress-

treated wild-type and transgenic plants using a Trizol

reagent (Invitrogen, Carlsbad, CA, USA), separated on 1%

agarose gel, and transferred to nylon membrane. Each gene

tested was labeled with [a-32P] dCTP using a random

labeling method (Smith 1996). The RNA blot membranes

were hybridized with cDNA fragments of genes, including

SlAREB (EST clone LEPSR08G09, GenBank accession

number DV105299), SlCI7-like dehydrin (EST clone

cLEX8A20, AW220124), and ubiquitin 3 (X58253).

Segments of four leaves from each of two individual plants

were collected and used for total RNA isolation. Each

experiment was performed in triplicate.

Promoter isolation

Genomic DNA was extracted from leaves of wild-type

tomato plants (Murray and Thompson 1980) and used for

GenomeWalker reactions, which were carried out as

described by the manufacturer (BD GenomeWalker Uni-

versal Kit, Clontech, Mountain View, CA, USA). In

addition to genome walking, inverse PCR was used to

extend the tomato SlCI7-like dehydrin promoter sequence

by use of specific primers (CI7-R1, 50-CTAGAGCTGC TA

TTTGATCGATGAAGT-30 and CI7-R2, 50-TCCTCCTCC

TTGGGTTCCAC TTCTTCA-30 designed from EST clone

cLEX8A20). The following amplification program was

used for the first PCR of genome walking: 1 cycle of 95�C

for 1 min, 7 cycles of 94�C for 25 s and 72�C for 3 min, 32

cycles of 94�C for 25 s and 67�C for 3 min, then 1 cycle of

67�C for 7 min. The program for the second PCR of gen-

ome walking was 1 cycle of 95�C for 1 min, 5 cycles of

94�C for 25 s and 72�C for 3 min, 25 cycles of 94�C for

25 s and 67�C for 3 min, then 1 cycle of 67�C for 7 min.

The PCR products were subsequently ligated to the

pGEMT easy vector (Promega, Madison, MI, USA) for

DNA sequencing.

Transient expression analysis

To construct the effector plasmid, the luciferase gene

(LUC) of pJD301 (Luehrsen et al. 1992) was replaced by

full-length cDNA of SlAREB at SalI and SacI sites.

Reporter plasmids were constructed by replacing the

CaMV 35S promoter of pJD301 with either the AtRD29A

promoter (TAC clone: K24M7, accession number:

AB019226, from 12,015 to 12,649), the tomato CI7-like

dehydrin promoter (both at HindIII and SalI sites), or the

SlLAP promoter (accession number: Y08305) at BamHI

and SalI sites. All plasmids used for transient expression

analysis were purified by the Qiagen Plasmid Mega kit

(Qiagen, Hilden, Germany) and confirmed by DNA

sequencing. Five-day-old wild-type tomato suspension

cells were harvested and resuspended in enzyme solution

[1/4 MS (Murashige and Skoog 1962; pH 5.8; Duchefa,

Haarlem, The Netherlands), MS vitamins, 3% sucrose,

0.4 M mannitol 2% cellulase RS (Yakult Honsha Co.,

Tokyo, Japan), 1% macerozyme R-10 (Yakult Honsha)],

and then incubated for 4 h at 24�C in the dark. The cell

pellets were collected by centrifugation at 100g for 5 min,

and then washed twice with WI solution (0.5 M mannitol,

4 mM Mes, pH 5.7, 20 mM KCl). The cell pellets were

gently resuspended with 20% sucrose and centrifuged at
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800g for 5 min. After centrifugation, protoplasts were

collected and washed twice with WI solution; the resulting

protoplasts were counted with a hemocytometer. 10 lg

plasmid DNA of each construction was electroporated into

protoplasts using the BTX electroporator (200 V, 13 X,

1,000 lF). Samples were then incubated with 10 lM ABA

(Sigma, St Louis, MO, USA) or 0.5 lM staurosporine

(Merck-Calbiochem, Darmstadt, Germany) for 20 or 40 h

at 24�C.

Electrophoretic mobility shift assays (EMSA)

The putative DNA-binding domain of SlAREB (nucleotide

sequence from 1,084 to 1,278 bp) was cloned into pET32a

bacterial expression vectors (Novagen, Darmstadt, Ger-

many) using EcoRV and HindIII sites to produce His-

tagged fusion proteins. Recombinant proteins were purified

using a nickel–nitrilotriacetic acid agarose column (Pro-

mega). 4 lg of recombinant proteins were used in elec-

trophoretic mobility shift assays along with radiolabeled

fragments of the SlLAP or AtRD29A promoters. Double-

stranded oligonucleotide probes were amplified by PCR

using primers (50-TGTAGGGTATCACGTAGGAC-30)
and (50-GCATGTCAACACGTTTTACT-30) for the SlLAP

promoter and (50-ACAGACGCTTCATACGTGTC-30)
and (50-AAACCCTTTATTCCTGATGA-30) for AtRD29A

promoter. The purified PCR products were radiolabeled

with [c-32P] ATP by T4 polynucleotide kinase (New

England Biolabs, Ipswich, MA, USA). For binding reac-

tions, recombinant proteins (4 lg each) were incubated for

30 min at room temperature with 0.5 ng of radiolabeled

probe and 1 lg of poly (dI-dC) in 30 ll buffer containing

10 mM Tris–HCl (pH 7.6), 50 mM KCl, 0.5 mM EDTA,

10% (v/v) glycerol, and 1 mM DTT. Competitors were

added in a 300- or 3,000-fold molar excess. All reaction

mixtures were resolved on a 4% polyacrylamide gel

(120 V for 2 h) in 0.59 TBE buffer (45 mM Tris, 45 mM

boric acid, and 1 mM EDTA).

Generation of transgenic Arabidopsis and tomato plants

The whole SlAREB coding region was cloned into pJD301

by removing a LUC at the SalI and SacI sites. The frag-

ment containing CaMV 35S promoter, a SlAREB cDNA

open reading frame from start to stop codon and a nos

terminator was cloned into pCAMBIA2301 and pCAM-

BIA1301 (Center for Application of Molecular Biology of

International Agriculture, Black Mountain, Australia), and

then transformed into Agrobacterium tumefaciens strain

GV3101 and EHA105 cells by electroporation for Ara-

bidopsis and tomato transformation, respectively. Trans-

formation of Arabidopsis thaliana (Columbia) was

performed by flower dipping. Tomato transformation

procedures were conducted as described previously (Hsieh

et al. 2002). Twenty-one and 20 independent lines of

Arabisopsis and tomato transgenic plants were obtained,

respectively. For each, three T2 homozygous lines with

high-level expression of transgene were chosen for further

analyses.

Molecular characterization of transgenic Arabidopsis

and tomato plants

Transgenic Arabidopsis and tomato plants were selected on

100 mg/l kanamycin (pCAMBIA2301/35S::SlAREB) or

20 mg/l hygromycin (pCAMBIA1301/35S::SlAREB).

Total RNA extracted from leaves of transgenic and

untransformed plants were used for Northern-blot hybrid-

ization as previously described. The following probes were

used for hybridization: Arabidopsis COR47 (At1g20440),

tomato SlAREB, SlCI7-like dehydrin, and ubiquitin 3

(UBI3). These cDNA fragments were labeled with [a-32P]

dCTP using the random primer method (Smith 1996).

Water deficit and salt treatments of Arabidopsis

and tomato plants

For ABA or PEG treatment, seeds of three independent

lines of SlAREB T3 transgenic and wild-type Arabidopsis

(20 plants each) were sowed onto 100-lm nylon mesh

supports on MS agar plates. Three-week-old Arabidopsis

seedlings with mesh were transferred to liquid 1/2 MS

medium with 50 lM ABA or 30% PEG8000 for 0, 5 and

8 h, and then collected for Northern-blot analysis.

In Arabidopsis, for water deficit treatment, 20 seedlings

each of 1-week-old wild-type and three T3 transgenic

Arabidopsis lines were grown in the same pot (3 pots per

experiments; 3 repeats) with watering every 2 days for

3 weeks followed by no watering for 2 weeks. For salt

treatment, 12 seedlings each of 1-week-old wild-type and

three transgenic Arabidopsis lines were grown in the same

pot (3 pots per experiments; 3 repeats) with regular

watering every 2 days for 3 weeks, followed by watering

every 2 days with a 150 mM NaCl solution for 2 weeks.

Photographs were taken after water deficit or salt treatment

for 2 weeks.

In tomato, one seedling each of three T2 transgenic and

wild-type plants was planted into the same pot. Tomatoes

of three pots per experiment were subjected to abiotic

stresses such as water deficit and salt stress. All the

experiments were performed at least in triplicate. For water

deficit treatment, wild-type and transgenic tomato were

grown in the same pot under 15 h illumination at 22�C and

35% relative humidity for 3 weeks with watering every

2 days, and then subjected to drought by withholding irri-

gation for 3 weeks. During the water deficit treatment, we
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measured Fv/Fm values (Hsieh et al. 2002) and water

content of leaves at day 0, 7, 14, and 21. In addition, we

measured water content of roots at day 0 and sacrificed

roots at day 21 for calculation of water content. For salt

treatment, 1-week-old wild-type and transgenic tomatoes

were planted into soil in the same pot and grown for one

week. Plants were then watered every 2 days with a

200 mM NaCl solution for 4 weeks. At the end of the

treatment, photographs were taken and the MDA content

(Sanjaya et al. 2008) and Fv/Fm values were measured.

Independent experiments were performed in triplicate with

three pots each.

Results

Characterization and identification of a bZIP

transcription factor that responds to abiotic stresses

in tomato plants

To study stress-related gene regulation at the transcrip-

tional level in tomato, we screened for genes involved in

abiotic stress response by using a homemade cDNA

microarray as described by Liu et al. (2006). Wild-type

tomato plants were grown under conditions of low tem-

perature, air drying, or high salinity for different periods,

and leaves and roots were collected separately to prepare

hybridization probes. Hybridization results showed that

some transcription factors showed up-regulation under

various abiotic stresses in different tissues (data not

shown). In this study, we characterized the cDNA clone

LEPSR08G09 (accession number DV105299), which

encodes a bZIP protein that was transiently upregulated by

air drying (drought treatment) and salt treatments in both

leaves and roots (Fig. 1). A BLAST search of the Ara-

bidopsis genome database revealed that LEPSR08G09

shares a high level of similarity with Arabidopsis AREB1

(AtAREB1, At1g45249); therefore it was named SlAREB.

AtAREB1 has previously been shown to respond to chilling,

air drying, or salt stresses (Sakamoto et al. 2000; Uno et al.

2000; Kreps et al. 2002; Mittler et al. 2006), suggesting

functional conservation of AREB between Arabidopsis and

tomato plants in response to stress conditions.

To further confirm the stress response of the SlAREB

identified by the microarray system, Northern-blot analysis

was performed. To this end, leaves and roots were col-

lected separately from wild-type tomato plants that were

subjected to chilling, air drying, and salt stresses for vari-

ous time periods. A tomato CI7-like dehydrin gene (EST

clone cLEX8A20), a homolog of Arabidopsis COR47

(Cold-regulated 47) and potato CI7 (Cold-induced 7)

dehydrin (van Berkel et al. 1994), was used to assess the

stress treatments of wild-type tomato plants. Dehydrin

belongs to the LEA (late embryogenesis abundant) protein

family and has been previously shown to be induced by salt

and ABA in many plant species (Brini et al. 2007;

Hundertmark and Hincha 2008). The obtained Northern-

blot analysis results confirmed that the mRNA of tomato

dehydrin rapidly accumulated to high levels in both leaves

and roots when wild-type plants were treated with chilling,

air drying, and high salinity, indicating that the wild-type

plants were suffering from abiotic stresses (Fig. 1).

Northern-blot analysis was used to investigate the

SlAREB transcription under stress conditions in leaves as

well as in roots (Fig. 1). By air drying, SlAREB was induced

at 2 h and reached a maximum at 12 h in both leaves and

roots (Fig. 1, lanes 10–11). By contrast, in the hydroponic

system, the induction of SlAREB expression by salt treatment

differed between roots and leaves. Accumulation of SlAREB

transcripts was detected 2 h after salt treatment in leaves and

reached a maximum at 12 h (Fig. 1a, lanes 16–17). In roots,

the expression of SlAREB was detected 1 h after salt treat-

ment, reached its highest level at 2 h, and then gradually

declined to background level at 24 h after salt treatment

(Fig. 1b, lanes 15–18). In contrast to air drying and salt

treatments, chilling showed no significant effect in the RNA

level of SlAREB in either leaves or roots (Fig. 1, lanes 1–6).

Thus, the Northern-blot data were consistent with the results

obtained through microarray analysis, which showed that

SlAREB was transiently upregulated by air drying and high

salinity stress in both tomato leaves and roots.

a

Dehydrin

0 0.5 1 2 12 24 0 0.5 1 2 12 24 0 0.5 1 2 12 24Time (h)

rRNA

Lane 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Chilling Air drying Salt

SlAREB

UBI3

b

rRNA

0 0.5 1 2 12 24 0 0.5 1 2 12 24 0 0.5 1 2 12 24Time (h)
Lane 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Chilling Air drying Salt

SlAREB

Dehydrin

UBI3

Fig. 1 Tomato transcription factors respond to abiotic stresses.

Northern-blot analysis was used to investigate the expression profiles

of transcription factors under chilling, air drying, and salt conditions.

Wild-type tomato plants were treated with chilling, water deficit, or

salt for various times, and leaves (a) and roots (b) were collected

separately. Each lane was loaded with 10 lg total RNA. Probes used

were tomato dehydrin and SlAREB. Tomato UBI3 (ubiquitin 3) and

rRNA were used as internal controls
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ABA-responsive element binding protein in tomato

plants

Among the transcription regulators we identified from the

tomato cDNA microarray (Supplementary data 1), the

AtAREB1 homolog SlAREB was characterized. Since only

a partial cDNA fragment of the EST clone LEPSR08G09

was initially isolated, we used 50 and 30 Rapid Amplifica-

tion of cDNA Ends (RACE, Supplementary material) fol-

lowed by RT-PCR to obtain the full-length cDNA.

Sequence alignments and domain searching revealed that

the predicted protein likely belongs to a member of the

AREB family, as it shared 50% identity in amino acid

sequences with AREB1 (accession number: BAB12404)

and 41% identity with AREB2 (accession number:

BAB12405) in Arabidopsis, as well as 44% identity with

Nicotiana tabacum phi-2 (accession number: BAB61098),

and 52% identity with Phaseolus vulgaris bZIP transcrip-

tion factor 6 (accession number: AAK39132). Furthermore,

the high sequence similarity of this protein with members

of the AREB family within the basic and leucine zipper

domains, which are highly conserved among various plant

species, suggests that LEPSR08G09 is an AREB homolog

in tomato plants; it was therefore designated as SlAREB1

(Solanum lycopersicum ABA-responsive element binding

protein 1, GenBank accession number AY530758; Yanez

et al. 2009) (Fig. 2). It has been reported that an ABA-

activated 42-kDa protein kinase activity controls the acti-

vation of AtAREB1 by phosphorylation of the Ser/Thr

residues of R-X-X-S/T sites in the conserved regions of

AtAREB1 (Furihata et al. 2006). Although SlAREB only

shared 50% identity with AtAREB1, five conserved

R-X-X-S/T sites were observed in SlAREB (Fig. 2), sug-

gesting that it may be a functional homolog.

Fig. 2 The bZIP domain of

SlAREB is highly similar to

bZIP-containing proteins.

Amino acid sequences of

tomato SlAREB, Arabidopsis
AREB1 and AREB2, Hordeum
vulgare HvABI5, Nicotiana
tabacum phi-2, and Phaseolus
vulgaris bZIP transcription

factor 6 (PvbZIP6) were aligned

using the ClustalW program and

showed conservation of the

bZIP domain (underlined).

Asterisks indicate putative

phosphorylation sites

(R-X-X-S/T) for a 42-kDa

protein kinase. Identical

residues between proteins are

marked by dark shading
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SlAREB protein is able to activate a luciferase reporter

driven by ABRE-containing promoter in tomato

protoplasts

In Arabidopsis mesophyll protoplasts, AtAREB1 and

AtAREB2 transiently activate the expression of the

b-glucuronidase (GUS) reporter gene fused to Arabidopsis

RD29A (AtRD29A) and AtRD29B promoters, which con-

tain ABREs (Uno et al. 2000; Narusaka et al. 2003). The

AtRD29A promoter has been confirmed to be induced at

significant levels by desiccation, cold, high salt conditions,

and ABA in both transgenic Arabidopsis and tobacco

(Yamaguchi-Shinozaki and Shinozaki 1993). Since

SlAREB is an AREB homolog in tomato plants, the

AtRD29A promoter was used to examine the activation

ability of SlAREB protein in a tomato protoplast system.

To this end, an effector plasmid containing the CaMV 35S

promoter and X enhancer fused to the SlAREB gene and a

reporter plasmid containing the AtRD29A promoter fused

to a LUC were employed (Fig. 3a). The AtRD29A pro-

moter alone was slightly activated when protoplasts were

treated with ABA (Fig. 3b). After co-transfection of the

SlAREB and AtRD29A constructs into tomato protoplasts, a

significantly increased luciferase activity (fivefold), corre-

sponding to increased AtRD29A promoter activity, was

observed in the presence of ABA (Fig. 3b). The activation

of luciferase activity is ABA-dependent: without exoge-

nous ABA application, SlAREB did not enhance AtRD29A

promoter activity as compared to the pUC18 control. It has

been reported that ABA-dependent phosphorylation of

AtAREB1 is required for its transactivation ability, which

is suppressed by the protein kinase inhibitor staurosporine

(Uno et al. 2000). However, we only detected about 20%

reduction of ABA-dependent SlAREB transactivation of

AtRD29A promoter by staurosporine (Fig. 3b).

To test whether SlAREB protein could activate a tomato

ABRE-containing promoter, we used a tomato LAP (SlLAP)

promoter fused to a luciferase reporter gene for transient

expression analysis (Fig. 4a). The promoter region of

SlLAP gene (Ruiz-Rivero and Prat 1998) contains three

ABRE-like cis-elements ‘ACGTG’: one in the sense strand

and two in the antisense strand. Transient expression anal-

ysis showed that ABA slightly activated the SlLAP pro-

moter in tomato protoplasts, which is consistent with

previous results (Chao et al. 1999) (Fig. 4b). Similarly, the

SlLAP promoter was slightly activated by SlAREB protein

in the absence of ABA in tomato protoplasts (Fig. 4b).

However, ABA treatment in the presence of the SIAREB

construct enhanced the LAP promoter activity significantly

(Fig. 4b). Furthermore, the activation of the SlLAP pro-

moter by SlAREB protein in the presence of ABA was
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functioning as a transcriptional activator. a An effector plasmid

containing SlAREB driven by the CaMV 35S promoter and tobacco

mosaic virus (TMV) X enhancer sequence was co-transfected into

wild-type tomato protoplasts with a reporter plasmid containing the

AtRD29A promoter fused to firefly luciferase. b After electroporation,

the protoplasts were treated with buffer (control, white bars), ABA

(gray bars), staurosporine (black bars) or ABA combined with

staurosporine (ABA? staurosporine, hatched bars) for 40 h. A GUS
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co-transfected in each experiment to normalize the transfection

efficiency. Error bars represent the standard deviation from the mean

of triplicate experiments. c Electrophoretic mobility shift assay

(EMSA) using a 120-bp-long, radiolabeled fragment probe from the

AtRD29A promoter containing ABRE and 4 lg of recombinant

proteins. Bacterial proteins carrying an empty vector were used as a

binding reaction control. The molar excess of the cold DNA used
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largely suppressed by staurosporine (Fig. 4b). Therefore,

overproduction of SlAREB alone did not sufficiently acti-

vate SlLAP and AtRD29A promoter activities (Figs. 3b, 4b).

The ABA-enhanced maximum transactivation of AtRD29A

and SlLAP promoters by SlAREB protein was probably due

to post-translational modification, such as phosphorylation,

which was repressed by staurosporine (Figs. 3b, 4b).

The DNA-binding domain of SlAREB physically

interacts with the promoter regions of AtRD29A

and SlLAP in vitro

As shown in Figs. 3b and 4b, SlAREB protein transacti-

vated AtRD29A and SlLAP promoters in ABA-treated

tomato protoplasts. To test whether SlAREB protein could

bind to AtRD29A and SlLAP promoters, we performed

electrophoretic mobility shift assays (EMSA) using puri-

fied DNA-binding domain of SlAREB as His-tag fusion

protein. As shown by a shifted band (Figs. 3c, 4c), the

recombinant DNA-binding domain of SlAREB protein

bound to the two DNA fragments containing either the

AtRD29A or the SlLAP promoter. When an excess amount

of unlabeled DNA was added, the binding activity was

diminished (Figs. 3c, 4c). These results indicate that the

DNA-binding domain of SlAREB was able to bind to

AtRD29A and SlLAP promoters containing ABREs in vitro

(Figs. 3c, 4c). In summary, SlAREB has binding ability in

vitro and can transactivate AtRD29A and SlLAP promoters

in vivo.

ABA is essential to activate AtRD29A expression

in constitutively expressed SlAREB transgenic

Arabidopsis

To elucidate the function of SlAREB in plants, we generated

21 transgenic Arabidopsis plants that overexpressed SlAREB

cDNA under the control of CaMV 35S promoter

(35S::SlAREB). Three T3 independent lines (L40, L74 and

L77) with high-level expression of transgene SlAREB were

used for further analyses. Ectopically expressed SlAREB

transcripts were detected in three transgenic lines but not in

wild-type plants (Fig. 5). We did not detect any AtRD29A

transcripts in either wild-type plants or the three transgenic

lines without exogenous ABA (time point 0), suggesting that

SlAREB alone was not sufficient to activate AtRD29A gene

expression in the absence of ABA. ABA-induced AtRD29A

expression was clearly observed after ABA treatment for 5 h

in wild-type as well as transgenic plants (Fig. 5). The

expression of AtRD29A transcripts was enhanced in transgenic

tomato plants overexpressing SlAREB after ABA treatment.
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analyses. a An effector plasmid containing SlAREB driven by CaMV
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protoplasts were treated with buffer (control, white bars), ABA (gray
bars), staurosporine (black bars) or ABA combined with stauro-
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reporter gene driven by CaMV 35S promoter was co-transfected in

each experiment to normalize the transfection efficiency. Bars
indicate the standard deviation of triplicates. c EMSA using a 150-

bp-long, radiolabeled fragment probe from the SlLAP promoter

containing three putative ABREs and 4 lg of recombinant proteins.
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indicated at the top of each lane
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Transgenic Arabidopsis plants overexpressing SlAREB

show increased tolerance to water deficit and high

salinity stress

It has been reported that overexpression of AtAREB1

enhances tolerance to multiple stresses, including drought,

salt, heat, and oxidative stresses in transgenic plants (Kim

et al. 2004; Fujita et al. 2005). To test whether overex-

pression of SlAREB in Arabidopsis can increase tolerance

to abiotic stresses, such as water deficit and high salinity,

three independent transgenic lines were subjected to stress

treatments. Wild-type plants and three independent trans-

genic lines were grown in the same pot with regular

watering. After withdrawing the water supply for 2 weeks,

leaves of wild-type Arabidopsis plants curled and wilted;

however, the three transgenic lines grew normally without

serious dehydration and flowered later than the wild-type

plants (Fig. 6a). To test salt-stress tolerance, wild-type

plants and three transgenic lines were grown in hydroponic

culture for 3 weeks. After treating with 150 mM NaCl for

2 weeks, wild-type plant leaves became pale green, while

transgenic plant leaves turned dark green (Fig. 6b). In

addition, high salinity caused more severe growth retar-

dation in wild-type plants than in transgenic plants

(Fig. 6b). In conclusion, ectopically expressed tomato

SlAREB in Arabidopsis increased tolerance to water deficit

and salt stresses. Consistent with results of transient assays,

SlAREB also increased AtRD29A expression in transgenic

Arabidopsis plants under ABA treatment (Fig. 5). To

clarify whether SlAREB activated other stress-responsive

genes that are likely involved in stress tolerance, AtCOR47

was used as a probe to perform Northern-blot analysis.

AtCOR47 transcripts accumulated under water deficit and

salt stress conditions in wild-type plants as well as trans-

genic plants (Fig. 6c). We detected more AtCOR47 tran-

scripts in transgenic plants in comparison with wild-type

plants upon water deficit and salt treatments (Fig. 6c).

Taken together, overexpression of a tomato SlAREB

enhanced tolerance to water deficit and salt stresses in

transgenic Arabidopsis plants and activated stress-responsive

genes such as AtRD29A and AtCOR47.

Overexpression of SlAREB in transgenic tomato plants

enhanced tolerance to water deficit and salt stresses

To examine whether SlAREB overexpression in tomato

also conferred tolerance to abiotic stresses, we generated

SlAREB-overexpressing transgenic tomato plants. After

hygromycin selection, we obtained 20 independent T0

lines, all of which were confirmed by genomic PCR and

Southern-blot analyses (data not shown). The three

homozygous T2 lines (LA1, LA2 and LA3) with the

highest accumulation of SlAREB transcripts were used for

further analyses. As shown in Fig. 7a, Northern-blot
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Fig. 5 Overexpression of tomato SlAREB in Arabidopsis plants is

insufficient to activate AtRD29A expression in the absence of ABA.

Three-week-old wild-type (WT) and transgenic plants T3 (L40, L74,

L77) were treated with 50 lM ABA for 5 and 8 h. Total RNA was

extracted, and 10 lg RNA was used in Northern-blot analysis using

tomato SlAREB and Arabidopsis RD29A as probes. rRNA was used as

a loading control
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Fig. 6 Ectopically overexpressed tomato SlAREB in Arabidopsis
plants enhances water deficit and salt tolerance. a Wild-type (WT) and

transgenic plants T3 (L40, L74, L77) were grown in the same pot with

regular watering, following water deprivation for 2 weeks. b Three-

week-old wild-type and transgenic plants were treated with 150 mM

NaCl for 2 weeks. c Two-week-old wild-type and transgenic plants

were incubated with water (control), 30% PEG (water deficit
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was extracted and 10 lg RNA was used in Northern-blot analysis

using tomato SlAREB and Arabidopsis COR47 as probes. rRNA was

used as a loading control
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analysis proved that transgenes SlAREB and Hpt are

expressed in the transgenic lines, but not in wild-type

plants under normal conditions. All of these transgenic

plants exhibited normal growth with no deleterious or

pleiotropic effects, suggesting that overproduction of

SlAREB did not influence transgenic plant growth or

morphological changes.

When transgenic (T2) and wild-type tomato plants,

which were grown in the same pot, were left unwatered

continually for 21 days, the leaves of wild-type plants

became wilted and curled, while transgenic plants grew

healthily (Fig. 7b). The photosynthesis capacity, measured

as chlorophyll fluorescence maximum photochemical effi-

ciency of PSII in the dark-adapted state (Fv/Fm), declined

in tandem with the periods of water withdrawal in wild-

type plants as well as transgenic plants (Fig. 7c). However,

the PSII integrity was significantly higher in transgenic

plants than in wild-type plants under water deficit condi-

tions (Fig. 7c). Dehydrated wild-type plants did not recover

from water deficit treatment after re-watering, and Fv/Fm

values were still low (data not shown). The three transgenic

lines maintained 50% of the photosynthesis activity of

well-watered control, even without watering for 21 days

(Fig. 7c), and almost completely recovered after watering

was resumed (data not shown). In addition, we measured

water content in tissues to evaluate the ability of plants to

retain water (Fig. 7d, e). Water content in leaves and roots

decreased in parallel with periods of water-deficit treatment

both in wild-type and transgenic plants (Fig. 7d, e). How-

ever, a marked reduction in water content was only

observed in wild-type plants. The three transgenic lines

retained considerably more water in leaves and roots than

wild-type plants during the periods of water-deficit treat-

ment (Fig. 7d, e). Consequently, overproduction of

SlAREB significantly confers tolerance to water deficit in

transgenic tomato plants.

To determine whether transgenic plants were tolerant to

salt stress, we grew transgenic tomato (T2) and wild-type

plants in the same pot and watered them with 200 mM

NaCl every second day. After watering with salt water for

2–4 weeks, wild-type plants wilted and subsequently died

(Fig. 8a). However, the transgenic plants grew healthily

and developed fruits at the end of salt treatment. To

compare stress injury in wild-type and transgenic plants,
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Fig. 7 Constitutively expressed

SlAREB in transgenic tomato

plants improves water deficit

tolerance. a Northern-blot

analysis detected SlAREB and

Hpt transcripts in three

transgenic tomato lines (LA1,

LA2 and LA3) but not in wild-

type plants (WT) under normal

conditions. Probes used were

SlAREB, Hpt and Ubiquitin
(Ubi). b Wild-type and three

transgenic T2 plants (WT, LA1,

LA2 and LA3) were grown at

24�C without watering for

21 days, and then photographs

were taken. c Wild-type plants

and plants from three transgenic

lines were deprived of water for

various amounts of time. Fv/Fm

values were measured on

days 0, 7, 14, and 21. d During

the periods of water deprivation,

water content of leaves was

measured on days 0, 7, 14, and

21. e To measure water content

of roots, we sacrificed wild-type

plants and plants from three

transgenic lines at the end of

water-deficit treatment. Water

content of roots was measured

on days 0 and 21. Each value is

the mean ± standard deviation
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we measured MDA (malonyldialdehyde), an end product

of lipid peroxidation that is considered a reliable indicator

of membrane injury under stress conditions (Jouve et al.

1993; Zhang and Kirkham 1994). There was no significant

difference between MDA content in the three transgenic

lines and the wild-type plant under normal conditions

(Fig. 8b). At the end of salt treatment, we detected MDA

accumulation in wild-type and the three transgenic lines as

compared with control treatment (Fig. 8b). The amount of

MDA accumulated in transgenic plants, though, was about

half of the amount determined in wild-type plants after salt

treatment for 2 weeks (Fig. 8b). Thus, membranes were

severely damaged in wild-type plants, whereas transgenic

plants maintained membrane integrity during salt treat-

ment. In addition, salt treatment had harsh effects on

photosynthesis activity in wild-type plants as shown by

Fv/Fm values, whereas there was only a moderate decline

in photosynthesis capacity in transgenic plants during salt

treatment (Fig. 8c). We conclude that constitutively

expressed SlAREB confers salt tolerance to transgenic

tomato plants.

Dehydrin gene expression is correlated to SlAREB

transgene in transgenic tomato under stress conditions

To investigate whether stress-related genes were upregu-

lated in SlAREB transgenic tomato plants, we used a

tomato CI7-like dehydrin cDNA as a probe to perform

Northern-blot analysis (Fig. 9). Tomato dehydrin tran-

scripts accumulated drastically in wild-type plants as well

as the three transgenic lines under water deficit and high

salinity conditions (Fig. 9); however, much higher amounts

of dehydrin transcripts were detected in the three trans-

genic lines than in wild-type plants under water deficit and

high salinity conditions (Fig. 9). Under normal conditions,

SlAREB transcripts were only detected in the three trans-

genic lines. Under water deficit and saline treatments,

considerably higher quantities of SlAREB transcripts

accumulated in both wild-type and transgenic plants

(Fig. 9). Thus, dehydrin is induced by water deficit and salt

stress and the amount of induction seems to be correlated to

SlAREB transgene expression.

Transactivation of SlAREB on tomato dehydrin

promoter depends on ABA signaling

To verify whether SlAREB protein could directly upregu-

late dehydrin gene expression under stress conditions, an

1172-bp-long sequence encompassing the tomato CI7-like

dehydrin promoter (SlCI7pro) was isolated by Genome

Walking. As shown in Supplementary Fig. S1, SlCI7pro
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contains two ABRE-like elements in the sense strand and

four ABRE like elements in the complementary strand. For

transient expression analysis, a reporter plasmid was con-

structed by fusing SlCI7pro to a luciferase reporter gene

(Fig. 10a). After co-transfection of this reporter and the

SlAREB effector constructs into tomato suspension pro-

toplasts, dehydrin promoter activity, as assessed by lucif-

erase activity, increased 40% with ABA treatment

(Fig. 10b). Overproduction of SlAREB alone did not affect

dehydrin promoter activity. ABA-enhanced transactivation

of tomato dehydrin promoter may also be caused by post-

translational modifications of SlAREB, as described above.

Discussion

Stress-responsive transcriptional regulators are

identified and characterized from a tomato microarray

Microarray-based transcriptome analysis provides a pow-

erful tool for global transcription profiling and discovery of

transcription regulators and stress-responsive genes not

only in Arabidopsis but also in crop and tree improvement

(Douglas and Ehlting 2005). Large-scale transcriptional

responses to abiotic stresses in tomato have not been

documented previously, although small-scale studies have

been conducted on light signaling, fruit development and

composition, fruit ripening, and disease resistance (Fei

et al. 2004; Alba et al. 2005; Balaji et al. 2007; Mounet

et al. 2009; Rutitzky et al. 2009). Transcription profiling of

these transcription factors facilitates the understanding of

their functions in plants and complex regulatory interac-

tions induced by stress at the transcriptional level in tomato

plants. Living organisms require numerous transcriptional

regulators to control complex and diverse biological pro-

cesses or to adapt to environmental stimuli. Several tran-

scription factors, including AP2/ERF, C2H2, and bZIP

families, have been identified from tomato cDNA micro-

array (Liu et al. 2006 and Chan, unpublished data). This

information will be important for revealing the functions of

these transcription regulators and facilitating the study of

signal transduction and gene regulation of tomato plants

under various stresses. In addition, these transcription

factors will contribute to the generation of transgenic plants

against various stresses. Here, we characterized a bZIP

transcription factor gene, SlAREB that increases its activity

significantly under air-drying and high salinity conditions

in tomato (Fig. 1). The Arabidopsis homolog of SlAREB is

AREB1, which is a well-known transcription regulator in

the ABA-mediated stress signal transduction pathway (Uno

et al. 2000). bZIP proteins characteristically contain a

highly conserved bZIP domain, which is composed of a

basic region for sequence-specific DNA binding and a

leucine zipper for dimerization specificity (Nijhawan et al.

2008). Genetic and molecular studies suggest that bZIP

transcription factors function in seed maturation and ger-

mination, ABA and/or stress signaling, and defense and

photomorphogenesis (Jakoby et al. 2002; Lopez-Molina

et al. 2002; Zhang et al. 2003; Fujita et al. 2005; Thurow

et al. 2005; Mallappa et al. 2006; Nijhawan et al. 2008).

Tomato SlAREB functions as a transcriptional activator

to regulate stress-related gene expression under stress

conditions and ABA treatment

SlAREB shows high conservation of the basic and leucine

zipper regions and phosphorylation sites R-X-X-S/T in

comparison with Arabidopsis AREB1 and AREB2 (Fig. 2).

It has been reported that an ABA-activated 42-kDa kinase

phosphorylates Ser/Thr residues in the conserved R-X-X-S/T

sites of AREB1, whose transactivation activity is sup-

pressed by substitution of one Ser/Thr into Ala (Furihata

et al. 2006). SnRK2.2 and SnRK2.3 are considered to

regulate ABA signaling through phosphorylation of
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AREBs, after which phosphorylated AREBs activate

ABRE-dependent gene expression (Yoshida et al. 2002;

Fujii and Zhu 2009). In addition, ABA-dependent phos-

phorylation is required for AREB1 and AREB2 to reach

maximal activities and activate downstream gene tran-

scription, which is suppressed by the protein kinase

inhibitor staurosporine (Uno et al. 2000). Here, we also

show evidence that phosphorylation is likely required for

SlAREB to activate AtRD29A and SlLAP promoter in the

presence of ABA treatment, as staurosporine treatment

repressed the promoter activity (Figs. 3b, 4b). Since

SlAREB transcription factor may require phosphorylation

to transactivate downstream genes, we manufactured a

recombinant protein containing the SlAREB DNA-binding

domain for gel retardation assay to avoid structural or

functional disturbance caused by translational modifica-

tions. We verified that the DNA-binding domain of

SlAREB protein is able to bind to the AtRD29A and SlLAP

promoter regions, which contain ABREs (Figs. 3c, 4c).

Thus, tomato SlAREB is a functional homolog of Arabid-

opsis AREB. Constitutively overexpressed AREB1 in Ara-

bidopsis is insufficient to activate downstream gene

AtRD29B expression under normal conditions (Fujita et al.

2005). However, substitution of Ser/Thr residues to Asp in

R-X-X-S/T sites results in a phosphorylated, transcrip-

tionally active form of AREB1 and consequently activates

LEA-class gene expression without ABA treatment (Fujita

et al. 2005; Furihata et al. 2006). These LEA-class genes

contain ABREs in their promoter regions (Furihata et al.

2006). In ABA-treated tomato protoplasts, SlAREB is able

to transactivate AtRD29A and SlLAP promoters, which

contain ABRE (Figs. 3b, 4b). Overproduction of SlAREB is

not sufficient to activate expression of stress-related genes

such as AtRD29A and AtCOR47 in Arabidopsis or SlCI7-

like dehydrin in tomato plants under normal conditions

(Figs. 5, 6, 9). However, ectopically expressed SlAREB can

activate AtRD29A expression under ABA treatment, in

agreement with the data obtained in the transient assays

(Figs. 3b, 5), whereas the AtCOR47 gene is moderately

activated under stress treatments (Fig. 6c). The stress-

related gene dehydrin is correlated with overexpressed

SlAREB in transgenic tomato plants under water deficit and

salt conditions (Fig. 9). It has been reported that overpro-

duction of multiple dehydrins increases tolerance to

freezing and salt stress in Arabidopsis (Puhakainen et al.

2004; Brini et al. 2007). A wealth of evidence indicates that

dehydrins may help to stabilize membranes and macro-

molecules, maintain enzyme activities, and prevent struc-

tural damage during dehydration (Close 1996; Rinne et al.

1999). Activation of stress-responsive genes such as

AtRD29A, AtCOR47, and SlCI7-like dehydrin by SlAREB

may play important roles in increasing water deficit and

salt tolerance in transgenic plants (Figs. 5, 6, 7, 8, 9). In

summary, SlAREB has the ability to activate some stress-

related gene expression in the presence of exogenous ABA

or under stress conditions that trigger the production of

ABA, which in turn induces various ABA-responsive genes

or indirectly activates SlAREB through phosphorylation by

ABA-activated protein kinases. All of these results dem-

onstrate that SlAREB functions as a transcriptional acti-

vator in the expression of stress-related genes and plays a

vital role in stress responses. It is reported that several

ABA-activated SNF1-related protein kinase 2s (SnRK2s)

can phosphorylate AREB polypeptides in vitro, and three

SnRK2 (SRK2D/E/I) can co-localize and interact with

AREB1 in nuclei in Arabidopsis (Fujita et al. 2009).

However, the putative tomato protein kinases that partici-

pate in phosphorylation of tomato AREB under abiotic

stresses have yet to be determined.

Drought and soil salinity are major stresses that

adversely affect crop productivity and quality, and thus

ways to improve stress tolerance of crop plants are highly

warranted. Expanding the knowledge of gene regulation

under stress conditions helps us to understand the adapta-

tion and acclimation mechanisms of plants against stresses

at the transcriptional level. In this study, SlAREB shows

water deficit and salt responsiveness (Fig. 1) implying that

it may be involved in the regulation of stress genes and in

the improvement of the stress tolerance of plants. Here, we

show evidence that overproduced SlAREB enhances toler-

ance to water deficit and salt stresses both in Arabidopsis

and tomato plants (Figs. 6, 7, 8). Under stress conditions,

transgenic but not wild-type tomato plants are able to

maintain photosynthesis, membrane integrity, and water

content (Figs. 7, 8). In fact, it has been reported that

AREB1 increases multiple stress tolerance in transgenic

Arabidopsis (Kim et al. 2004; Fujita et al. 2005). Wheat

Wabi5, as a counterpart of AREB/ABF, improves abiotic

stress tolerance against freezing, osmotic and salt stresses

in transgenic tobacco plants (Kobayashi et al. 2008). Our

study is the first to report that AREB1 homolog, a tomato

SlAREB1, confers water deficit and salt tolerance not only

in Arabidopsis but also in tomato plants. In addition,

because the phosphorylation activation of SlAREB protein

requires ABA or abiotic stress treatment, the phenotype

and yields of SlAREB transgenic tomato plants showed no

significant differences to wild-type plants, indicating a

drastic improvement from model plants in the laboratory to

crop plants in the fields.
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