Skip to main content
Log in

miR398 and miR408 are up-regulated in response to water deficit in Medicago truncatula

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Plant microRNAs have been implicated in various abiotic stress responses. We identified several conserved microRNAs that showed differential expression in Medicago truncatula plants subjected to water deficit: miR169 is down-regulated only in the roots and miR398a/b and miR408 are strongly up-regulated in both shoots and roots. Down-regulation of miR169 in the roots did not correlate with accumulation of its target MtHAP2-1 transcripts, suggesting that its regulation may not occur at the mRNA level or may depend on other regulatory mechanisms, which do not involve this miRNA, in water-deficit conditions. The up-regulation of miR398a/b and miR408 and the clear down-regulation of their respective target genes, which encode the copper proteins COX5b (subunit 5b of mitochondrial cytochrome c oxidase) and plantacyanin, highlight the involvement of these miRNAs in response to water deprivation in M. truncatula. Also, miR398 up-regulation is inversely correlated with the down-regulation of copper superoxide dismutase, CSD1, during water deficit. The regulation of genes encoding copper proteins by miR398a/b and miR408 suggests a link between copper homeostasis and M. truncatula adaptation to progressive water deficit.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

COX5b:

Subunit 5b of mitochondrial cytochrome c oxidase

CSD:

Copper superoxide dismutase

HDT3:

Histone deacetylase

MiRNA:

MicroRNA

P1B-ATPase:

P1B-Adenosine triphosphatase

5′-RACE:

5′-Rapid amplification of cDNA ends

UTR:

Untranslated region

References

  • Abdel-Ghany SE, Pilon M (2008) MicroRNA-mediated systemic down-regulation of copper protein expression in response to low copper availability in Arabidopsis. J Biol Chem 283:15932–15945

    Article  PubMed  CAS  Google Scholar 

  • Andersen CL, Jensen JL, Orntoft TF (2004) Normalisation of real-time quantitative reverse transcription-PCR data: a model-based variance estimation approach to identify genes suited for normalisation, applied to bladder and colon cancer data sets. Cancer Res 64:5245–5250

    Article  PubMed  CAS  Google Scholar 

  • Araújo S, Duque S, Santos D, Fevereiro MP (2004) An efficient transformation method to regenerate a high number of transgenic plants using a new embryogenic line of Medicago truncatula cv. Jemalong. Plant Cell Tiss Org 8:123–131

    Article  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116:281–297

    Article  PubMed  CAS  Google Scholar 

  • Bartels D, Sunkar R (2005) Drought and salt tolerance in plants. Crit Rev Plant Sci 24:52123–52158

    Article  Google Scholar 

  • Boualem A, Laporte P, Jovanovic M, Laffont C, Plet J, Combier JP, Niebel A, Crespi M, Frugier F (2008) MicroRNA166 controls root and nodule development in Medicago truncatula. Plant J 54:876–887

    Article  PubMed  CAS  Google Scholar 

  • Burkhead JL, Reynolds KAG, Abdel-Ghany SE, Cohu CM, Pilon M (2009) Copper homeostasis. New Phytol 182:799–816

    Article  PubMed  CAS  Google Scholar 

  • Catsky J (1960) Determination of water deficit in discs cut out from leaf blades. Biol Plant 2:76–77

    Article  CAS  Google Scholar 

  • Chen X (2004) A microRNA as a translational repressor of APETALA2 in Arabidopsis flower development. Science 303:2022–2025

    Article  PubMed  CAS  Google Scholar 

  • Combier JP, Frugier F, Billy F, Boualem A, El-Yahyaoui F, Moreau S, Vernie T, Ott T, Gamas P, Crespi M, Niebel A (2006) MtHAP2–1 is a key transcriptional regulator of symbiotic nodule development regulated by microRNA169 in Medicago truncatula. Genes Dev 20:3084–3088

    Article  PubMed  CAS  Google Scholar 

  • Dezulian T, Palatnik JF, Huson D, Weigel D (2005) Conservation and divergence of microRNA families in plants. Genome Biol. doi:10.1186/gb-2005-6-11-p13

  • Di Laurenzio L, Wysocka-Diller J, Malamy JE, Pysh L, Helariutta Y, Preshour G, Hahn MG, Feldmann KA, Benfey PN (1996) The SCARECROW gene regulates an asymmetric cell division that is essential for generating the radial organization of the Arabidopsis root. Cell 86:423–433

    Article  PubMed  CAS  Google Scholar 

  • Dong J, Kim ST, Lord EM (2005) Plantacyanin plays a role in reproduction in Arabidopsis. Plant Physiol 138:778–789

    Article  PubMed  CAS  Google Scholar 

  • Dugas DV, Bartel B (2008) Sucrose induction of Arabidopsis miR398 represses two Cu/Zn superoxide dismutases. Plant Mol Biol 67:403–417

    Article  PubMed  CAS  Google Scholar 

  • Emery JF, Floyd SK, Alvarez J, Eshed Y, Hawker NP, Izhaki A, Baum SF, Bowman JL (2003) Radial patterning of Arabidopsis shoots by class III HD-ZIP and KANADI genes. Curr Biol 13:1768–1774

    Article  PubMed  CAS  Google Scholar 

  • Griffith-Jones S (2004) The microRNA registry. Nucleic Acids Res 32 (database issue):D109–D111

  • Hall TA (1999) BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98

    CAS  Google Scholar 

  • Hawker NP, Bowman JL (2004) Roles for class III HD-Zip and KANADI genes in Arabidopsis root development. Plant Physiol 135:2261–2270

    Article  PubMed  CAS  Google Scholar 

  • Jagadeeswaran G, Saini A, Sunkar R (2009a) Biotic and abiotic stress down-regulate miR398 expression in Arabidopsis. Planta 229:1009–1014

    Article  PubMed  CAS  Google Scholar 

  • Jagadeeswaran G, Zheng Y, Li Y-F, Shukla LI, Matts J, Hoyt P, Macmil SL, Wiley GB, Roe BA, Zhang W, Sunkar R (2009b) Cloning and characterization of small RNAs from Medicago truncatula reveals four novel legume-specific microRNA families. New Phytol 184:85–98

    Article  PubMed  CAS  Google Scholar 

  • Jones-Rhoades MJ, Bartel DP (2004) Computational identification of plant microRNAs and their targets, including a stress induced miRNA. Mol Cell 14:787–799

    Article  PubMed  CAS  Google Scholar 

  • Jung HJ, Kang H (2007) Expression and functional analyses of microRNA417 in Arabidopsis thaliana under stress conditions. Plant Physiol Biochem 45:805–811

    Article  PubMed  CAS  Google Scholar 

  • Kasschau KD, Xie Z, Allen E, Llave C, Chapman EJ, Krizan KA, Carrington JC (2003) P1/HC-Pro, a viral suppressor of RNA silencing, interferes with Arabidopsis development and miRNA function. Dev Cell 4:205–217

    Article  PubMed  CAS  Google Scholar 

  • Khan HR, Link W, Hocking TJ, Stoddard FL (2007) Evaluation of physiological traits for improving drought tolerance in faba bean (Vicia faba L.). Plant Soil 292:205–217

    Article  CAS  Google Scholar 

  • Lelandais-Brière C, Naya L, Sallet E, Calenge F, Frugier F, Hartmann C, Gouzy J, Crespi M (2009) Genome-wide Medicago truncatula small RNA analysis revealed novel microRNAs and isoforms differentially regulated in roots and nodules. Plant Cell. doi:10.1105/tpc.109.068130

  • Liu PP, Montgomery TA, Fahlgren N, Kasschau KD, Nonogaki H, Carrington JC (2007) Repression of AUXIN RESPONSE FACTOR10 by microRNA160 is critical for seed germination and post-germination stages. Plant J 52:133–146

    Article  PubMed  CAS  Google Scholar 

  • Liu H-H, Tian X, Li Y-J, Wu C-A, Zheng C-C (2008) Microarray-based analysis of stress-regulated microRNAs in Arabidopsis thaliana. RNA 14:836–843

    Article  PubMed  CAS  Google Scholar 

  • Llave C, Xie Z, Kasschau KD, Carrington JC (2002) Cleavage of Scarecrow-like mRNA targets directed by a class of Arabidopsis miRNA. Science 297:2053–2056

    Article  PubMed  CAS  Google Scholar 

  • Lu C, Fedoroff NV (2000) A mutation in the Arabidopsis HYL1 gene encoding a dsRNA binding protein affects responses to abscisic acid, auxin, and cytokinin. Plant Cell 12:2351–2366

    Article  PubMed  CAS  Google Scholar 

  • Lu S, Sun YH, Shi R, Clark C, Li L, Chiang VL (2005) Novel and mechanical stress-responsive microRNAs in Populus trichocarpa that are absent from Arabidopsis. Plant Cell 17:2186–2203

    Article  PubMed  CAS  Google Scholar 

  • Moxon S, Schwach F, Maclean D, Dalmay T, Studholme DJ, Moulton V (2008) A toolkit for analysing large-scale plant small RNA datasets. Bioinformatics 24:2252–2253

    Article  PubMed  CAS  Google Scholar 

  • Navarro L, Dunoyer P, Jay F, Arnold B, Dharmasiri N, Estelle M, Voinnet O, Jones JD (2006) A plant miRNA contributes to antibacterial resistance by repressing auxin signaling. Science 312:436–439

    Article  PubMed  CAS  Google Scholar 

  • Neves LO, Duque SRL, Almeida JS, Fevereiro PS (1999) Repetitive somatic embryogenesis in Medicago truncatula ssp. Narbonensis and M. truncatula Gaertn cv. Jemalong. Plant Cell Rep 18:398–405

    Article  Google Scholar 

  • Nunes C, Araújo S, Silva J, Fevereiro P, Silva A (2008) Physiological responses of the legume model Medicago truncatula cv. Jemalong to water deficit. Environ Exp Bot 63:289–296

    Article  CAS  Google Scholar 

  • Nunes C, Araújo S, Silva J, Fevereiro P, Silva A (2009) Photosynthesis light curves: a method for screening water deficit resistance in the model legume Medicago truncatula. Ann Appl Biol. doi:10.1111/j.1744-7348.2009.00341.x

  • Pall GS, Codony-Servat C, Byrne J, Ritchie L, Hamilton A (2007) Carbodiimide-mediated cross-linking of RNA to nylon membranes improves the detection of siRNA, miRNA and piRNA by Northern blot. Nucleic Acids Res 35(8):e60

    Article  PubMed  Google Scholar 

  • Phillips J, Dalmay T, Bartels D (2007) The role of small RNAs in abiotic stress. FEBS Lett 581:3592–3597

    Article  PubMed  CAS  Google Scholar 

  • Potters G, Pasternak TP, Guisez Y, Palme KJ, Jansen MAK (2006) Stress-induced morphogenic responses: growing out of trouble? Trends Plant Sci 12:1360–1385

    Google Scholar 

  • Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP (2002) MicroRNAs in plants. Genes Dev 16:1616–1626

    Article  PubMed  CAS  Google Scholar 

  • Reyes JL, Chua NH (2007) ABA induction of miR159 controls transcript levels of two MYB factors during Arabidopsis seed germination. Plant J 49:592–606

    Article  PubMed  CAS  Google Scholar 

  • Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel B, Bartel DP (2002) Prediction of plant microRNA targets. Cell 110:513–520

    Article  PubMed  CAS  Google Scholar 

  • Santos D, Fevereiro P (2002) Loss of DNA methylation affects somatic embryogenesis in Medicago truncatula. Plant Cell Tiss Org 70:155–161

    Article  CAS  Google Scholar 

  • Schroeder JI, Kwak JM, Allen GJ (2001) Guard cell abscisic acid signalling and engineering drought hardiness in plants. Nature 410:327–330

    Article  PubMed  CAS  Google Scholar 

  • Schwarz S, Grande AV, Bujdoso N, Saedler H, Huijser P (2008) The microRNA regulated SBP-box genes SPL9 and SPL15 control shoot maturation in Arabidopsis. Plant Mol Biol 67:183–195

    Article  PubMed  CAS  Google Scholar 

  • Song CP, Agarwal M, Ohta M, Guo Y, Halfter U, Wang P, Zhu JK (2005) Role of an Arabidopsis AP2/EREBP-type transcriptional repressor in abscisic acid and drought stress responses. Plant Cell 17:2384–2396

    Article  PubMed  CAS  Google Scholar 

  • Sridha S, Wu K (2006) Identification of AtHD2C as a novel regulator of abscisic acid responses in Arabidopsis. Plant J 46:124–133

    Article  PubMed  CAS  Google Scholar 

  • Sunkar R, Zhu JK (2004) Novel and stress-regulated microRNAs and other small RNAs from Arabidopsis. Plant Cell 16:2001–2019

    Article  PubMed  CAS  Google Scholar 

  • Sunkar R, Kapoor A, Zhu JK (2006) Posttranscriptional induction of two Cu/Zn superoxide dismutase genes in Arabidopsis is mediated by downregulation of miR398 and important for oxidative stress tolerance. Plant Cell 18:2051–2065

    Article  PubMed  CAS  Google Scholar 

  • Szittya G, Moxon S, Santos DM, Jing R, Fevereiro MP, Moulton V, Dalmay T (2008) High-throughput sequencing of Medicago truncatula short RNAs identifies eight new miRNA families. BMC Genomics 9:593

    Article  PubMed  Google Scholar 

  • Vandesompele J, De Preter K, Pattyn F, Poppe B, Van Roy N, De Paepe A, Speleman F (2002) Accurate normalization of real-time quantitative RT-PCR data by geometric averaging of multiple internal control genes. Genome Biol 3:research0034.1–0034.11

    Google Scholar 

  • Vazquez F, Blevins T, Ailhas J, Boller T, Meins F Jr (2008) Evolution of Arabidopsis MIR genes generates novel microRNA classes. Nucleic Acids Res 36:6429–6438

    Article  PubMed  CAS  Google Scholar 

  • Weigel M, Varotto C, Pesaresi P, Finazzi G, Rappaport F, Salamini F, Leister D (2003) Plastocyanin is indispensable for photosynthetic electron flow in Arabidopsis thaliana. J Biol Chem 278:31286–31289

    Article  PubMed  CAS  Google Scholar 

  • Wen J, Frickey T, Weiller GF (2008) Computational prediction of candidate miRNAs and their targets from Medicago truncatula non-protein-coding transcripts. In Silico Biol 8:291–306

    PubMed  CAS  Google Scholar 

  • Williams LE, Mills RF (2005) P1B-ATPases–an ancient family of transition metal pumps with diverse functions in plants. Trends Plant Sci 10:491–502

    Article  PubMed  CAS  Google Scholar 

  • Yamasaki H, Abdel-Ghany SE, Cohu CM, Kobayashi Y, Shikanai T, Pilon M (2007) Regulation of copper homeostasis by micro-RNA in Arabidopsis. J Biol Chem 282:16369–16378

    Article  PubMed  CAS  Google Scholar 

  • Yamasaki H, Hayashi M, Fukazawa M, Kobayashi Y, Shikanaic T (2009) SQUAMOSA promoter binding protein-like7 is a central regulator for copper homeostasis in Arabidopsis. Plant Cell 21:347–361

    Article  PubMed  CAS  Google Scholar 

  • Zhang Y (2005) miRU: an automated plant miRNA target prediction server. Nucleic Acids Res 33 (web server issue):W701–W704

    Google Scholar 

  • Zhao S, Fernald RD (2005) Comprehensive algorithm for quantitative real-time polymerase chain reaction. J Comput Biol 12:1045–1062

    Google Scholar 

  • Zhao B, Liang R, Ge L, Li W, Xiao H, Lin H, Ruan K, Jin Y (2007) Identification of drought-induced microRNAs in rice. Biochem Biophys Res Comm 354:585–590

    Article  PubMed  CAS  Google Scholar 

  • Zhou ZS, Huang SQ, Yang ZM (2008) Bioinformatic identification and expression analysis of new microRNAs from Medicago truncatula. Biochem Biophys Res Comm 374:538–542

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by Fundação para a Ciência e Tecnologia (FCT) through the ERA-NET Plant Genomics initiative ERA-PG/0001/2006. Inês Trindade is recipient of a PhD fellowship from FCT (SFRH/BD/40738/2007). Dulce Santos was supported by a FCT post-doctoral fellowship (SFRH/BPD/33348/2008). We acknowledge Dr. Gyorgy Szittya and Dr. Runchun Jin (School of Biological Sciences, UEA) and Dr. Jorge Paiva and Dr. Susana Araújo (ITQB) for their technical advice.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Inês Trindade.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Cite this article

Trindade, I., Capitão, C., Dalmay, T. et al. miR398 and miR408 are up-regulated in response to water deficit in Medicago truncatula . Planta 231, 705–716 (2010). https://doi.org/10.1007/s00425-009-1078-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-009-1078-0

Keywords

Navigation