Skip to main content
Log in

Short-term salinity stress in tobacco plants leads to the onset of animal-like PCD hallmarks in planta in contrast to long-term stress

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Recent results have identified mitochondria as centers of stress-induced generation of reactive oxygen species in plants. Depolarization of plant mitochondrial membrane during stress results the release of programmed cell death (PCD)-inducing factors in the cytosol in a fashion similar to the onset of animal-like PCD. Herein, we report significant similarities of animal-like PCD and salinity stress-induced plant PCD. Short-term salinity stress (3 h) led to depolarization of the mitochondrial membrane, release of cytochrome c (CYT-c), which was visualized using a contemporary molecular technique, activation of caspase-3 type proteases and the onset of PCD in wild type tobacco plants, Nicotiana tabacum cv. Petit Havana. However, PCD was not manifested during long-term salinity stress (24 h). Interestingly long-term salinity stress led to necrotic-like features, which were accompanied by collapse of respiration, reduction of key components of the respiratory chain, such as CYT-c and alternative oxidase, ATP depletion and high proteolytic activity. The results suggest that salinity stress of tobacco plants in planta leads to the onset of animal-like PCD only during the early stages post-stress, while long-term stress leads to necrotic-like features.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

PCD:

Programmed cell death

ROS:

Reactive oxygen species

mROS:

Mitochondrial reactive oxygen species

CYT-c :

Cytochrome c

nPG:

n-Propyl gallate

SHAM:

Salicylhydroxamic acid

AOX:

Alternative oxidase

PTOX:

Plastid terminal oxidase

PMSF:

Phenylmethylsulfonyl fluoride

ETC:

Electron transport chain

NBT:

Nitroblue tetrazolium

References

  • Abdullaev ZK, Bodrova ME, Chernyak BV, Dolgikh DA, Kluck RM, Pereverzev MO, Arseniev AS, Efremov RG, Kirpichnikov MP, Mokhova EN, Newmeyer DD, Roder H, Skulachev VP (2002) A cytochrome c mutant with high electron transfer and antioxidant activities but devoid of apoptogenic effect. Biochem J 362:749–754

    Article  CAS  PubMed  Google Scholar 

  • Aranha MM, Matos AR, Teresa Mendes A, Vaz Pinto V, Rodrigues CMP, Arrabaca JD (2007) Dinitro-o-cresol induces apoptosis-like cell death but not alternative oxidase expression in soybean cells. J Plant Physiol 164:675–684

    Article  CAS  PubMed  Google Scholar 

  • Asada K (2006) Production and scavenging of reactive oxygen species in chloroplasts and their functions. Plant Physiol 141:391–396

    Article  CAS  PubMed  Google Scholar 

  • Atkin OK, Zhang Q, Wiskich JT (2002) Effect of temperature on rates of alternative and cytochrome pathway respiration and their relationship with the redox poise of the quinone pool. Plant Physiol 128:212–222

    Article  CAS  PubMed  Google Scholar 

  • Balk J, Leaver CJ, McCabe PF (1999) Translocation of cytochrome c from the mitochondria to the cytosol occurs during heat-induced programmed cell death in cucumber plants. FEBS Lett 463:151–154

    Article  CAS  PubMed  Google Scholar 

  • Blackstone NW, Green DR (1999) The evolution of a mechanism of cell suicide. BioEssays 21:84–88

    Article  CAS  PubMed  Google Scholar 

  • Braidot E, Petrussa E, Vianello A, Macri F (1999) Hydrogen peroxide generation by higher plant mitochondria oxidizing complex I or complex II substrates. FEBS Lett 451:347–350

    Article  CAS  PubMed  Google Scholar 

  • Chemeris YK, Shenderova LV, Venediktov PS, Rubin AB (2004) Activation of chlororespiration increases chlorophyll fluorescence yield in Chlorella adapted to darkness at high temperature. Biol Bull 31:143–150

    Article  CAS  Google Scholar 

  • Czarna M, Jarmuszkiewicz W (2005) Activation of alternative oxidase and uncoupling protein lowers hydrogen peroxide formation in amoeba Acanthamoeba castellanii mitochondria. FEBS Lett 579:3136–3140

    Article  CAS  PubMed  Google Scholar 

  • Del Pozo O, Lam E (1998) Caspases and programmed cell death in the hypersensitive response of plants to pathogens. Curr Biol 8:1129–1132

    Article  PubMed  Google Scholar 

  • Diaz M, De-Haro V, Munoz R, Quiles MJ (2007) Chlororespiration is involved in the adaptation of Brassica plants to heat and high light intensity. Plant Cell Environ 30:1578–1585

    Article  CAS  PubMed  Google Scholar 

  • Ellis RE, Yuan JY, Horvitz HR (1991) Mechanisms and functions of cell death. Annu Rev Cell Biol 7:663–698

    Article  CAS  PubMed  Google Scholar 

  • Elthon TE, Nickels RL, McIntosh L (1989) Monoclonal antibodies to the alternative oxidase of higher plant mitochondria. Plant Physiol 89:1311–1317

    Article  CAS  PubMed  Google Scholar 

  • Finazzi G, Furia A, Barbagallo RP, Forti G (1999) State transitions, cyclic and linear electron transport and photophosphorylation in Chlamydomonas reinhardtii. Biochim Biophys Acta Bioenerg 1413:117–129

    Article  CAS  Google Scholar 

  • Gadjev I, Stone JM, Gechev TS (2008) Programmed cell death in plants: new insights into redox regulation and the role of hydrogen peroxide. Int Rev Cell Mol Biol 270:87–144

    Article  CAS  PubMed  Google Scholar 

  • Giannattasio S, Atlante A, Antonacci L, Guaragnella N, Lattanzio P, Passarella S, Marra E (2008) Cytochrome c is released from coupled mitochondria of yeast en route to acetic acid-induced programmed cell death and can work as an electron donor and a ROS scavenger. FEBS Lett 582:1519–1525

    Article  CAS  PubMed  Google Scholar 

  • Green DR, Reed JC (1998) Mitochondria and apoptosis. Science 281:1309–1312

    Article  CAS  PubMed  Google Scholar 

  • Halestrap AP, Gillespie JP, O’Toole A, Doran E (2000) Mitochondria and cell death: a pore way to die? Symp Soc Exp Biol 52:65–80

    CAS  PubMed  Google Scholar 

  • Hammarstrom M, Hellgren N, van Den Berg S, Berglund H, Hard T (2002) Rapid screening for improved solubility of small human proteins produced as fusion proteins in Escherichia coli. Protein Sci 11:313–321

    Article  CAS  PubMed  Google Scholar 

  • Iandolino AB, FGd Silva, Lim H, Choi H, Williams LE, Cook DR (2004) High-quality RNA, cDNA, and derived EST libraries from grapevine (Vitis vinifera L). Plant Mol Biol Rep 22:269–278

    Article  CAS  Google Scholar 

  • Jabs T, Dietrich RA, Dangl JL (1996) Initiation of runaway cell death in an Arabidopsis mutant by extracellular superoxide. Science 273:1853–1856

    Article  CAS  PubMed  Google Scholar 

  • Jones A (2000) Does the plant mitochondrion integrate cellular stress and regulate programmed cell death? Trends Plant Sci 5:225–230

    Article  CAS  PubMed  Google Scholar 

  • Josse E-M, Simkin AJ, Gaffe J, Laboure A-M, Kuntz M, Carol P (2000) A plastid terminal oxidase associated with carotenoid desaturation during chromoplast differentiation. Plant Physiol 123:1427–1436

    Article  CAS  PubMed  Google Scholar 

  • Josse E-M, Alcaraz J-P, Labourι A-M, Kuntz M (2003) In vitro characterization of a plastid terminal oxidase (PTOX). Eur J Biochem 270:3787–3794

    Article  CAS  PubMed  Google Scholar 

  • Korshunov SS, Krasnikov BF, Pereverzev MO, Skulachev VP (1999) The antioxidant functions of cytochrome c. FEBS Lett 462:192–198

    Article  CAS  PubMed  Google Scholar 

  • Korthout HAAJ, Berecki G, Bruin W, van Duijn B, Wang M (2000) The presence and subcellular localization of caspase 3-like proteinases in plant cells. FEBS Lett 475:139–144

    Article  CAS  PubMed  Google Scholar 

  • Kowaltowski AJ, Vercesi AE (1999) Mitochondrial damage induced by conditions of oxidative stress. Free Radic Biol Med 26:463–471

    Article  CAS  PubMed  Google Scholar 

  • Krishnamurthy KV, Krishnaraj R, Chozhavendan R, Christopher FS (2000) The programme of cell death in plants and animals—a comparison. Curr Sci 79:1169–1181

    CAS  Google Scholar 

  • Lam E, Pontier D, del Pozo O (1999) Die and let live—programmed cell death in plants. Curr Opin Plant Biol 2:502–507

    Article  CAS  PubMed  Google Scholar 

  • Lamb C, Dixon RA (1997) The oxidative burst in plant disease resistance. Annu Rev Plant Physiol Plant Mol Biol 48:251–275

    Article  CAS  PubMed  Google Scholar 

  • Moschou PN, Delis ID, Paschalidis KA, Roubelakis-Angelakis KA (2008a) Transgenic tobacco plants overexpressing polyamine oxidase are not able to cope with oxidative burst generated by abiotic factors. Physiol Plant 133:140–156

    Article  CAS  PubMed  Google Scholar 

  • Moschou PN, Paschalidis KA, Delis ID, Andriopoulou AH, Lagiotis GD, Yakoumakis DI, Roubelakis-Angelakis KA (2008b) Spermidine exodus and oxidation in the apoplast induced by abiotic stress is responsible for H2O2 signatures that direct tolerance responses in tobacco. Plant Cell 20:1708–1724

    Article  CAS  PubMed  Google Scholar 

  • Munns R (2002) Comparative physiology of salt and water stress. Plant Cell Environ 25:239–250

    Article  CAS  PubMed  Google Scholar 

  • Noctor G, De Paepe R, Foyer CH (2007) Mitochondrial redox biology and homeostasis in plants. Trends Plant Sci 12:125–134

    Article  CAS  PubMed  Google Scholar 

  • Papadakis AK, Roubelakis-Angelakis KA (1999) The generation of active oxygen species differs in tobacco and grapevine mesophyll protoplasts. Plant Physiol 121:197–206

    Article  CAS  PubMed  Google Scholar 

  • Papadakis AK, Roubelakis-Angelakis KA (2005) Polyamines inhibit NADPH oxidase-mediated superoxide generation and putrescine prevents programmed cell death induced by polyamine oxidase-generated hydrogen peroxide. Planta 220:826–837

    Article  CAS  PubMed  Google Scholar 

  • Pereira L-F, Campello A-P, Silveira O (1994) Effect of tordon 2, 4-D triethanolamine on the energy metabolism of rat liver mitochondria. J Appl Toxicol 14:21–26

    Article  CAS  PubMed  Google Scholar 

  • Rhoads DM, Umbach AL, Subbaiah CC, Siedow JN (2006) Mitochondrial reactive oxygen species. Contribution to oxidative stress and interorganellar signaling. Plant Physiol 141:357–366

    Article  CAS  PubMed  Google Scholar 

  • Robson CA, Vanlerberghe GC (2002) Transgenic plant cells lacking mitochondrial alternative oxidase have increased susceptibility to mitochondria-dependent and -independent pathways of programmed cell death. Plant Physiol 129:1908–1920

    Article  CAS  PubMed  Google Scholar 

  • Scherz-Shouval R, Elazar Z (2007) ROS, mitochondria and the regulation of autophagy. Trends Cell Biol 17:422–427

    Article  CAS  PubMed  Google Scholar 

  • Simeonova E, Garstka M, Koziol-Lipinska J, Mostowska A (2004) Monitoring the mitochondrial transmembrane potential with the JC-1 fluorochrome in programmed cell death during mesophyll leaf senescence. Protoplasma 223:143–153

    Article  CAS  PubMed  Google Scholar 

  • Skopelitis DS, Paranychianakis NV, Paschalidis KA, Pliakonis ED, Delis ID, Yakoumakis DI, Kouvarakis A, Papadakis AK, Stephanou EG, Roubelakis-Angelakis KA (2006) Abiotic stress generates ROS that signal expression of anionic glutamate dehydrogenases to form glutamate for proline synthesis in tobacco and grapevine. Plant Cell 18:2767–2781

    Article  CAS  PubMed  Google Scholar 

  • Skulachev VP (1998) Cytochrome c in the apoptotic and antioxidant cascades. FEBS Lett 423:275–280

    Article  CAS  PubMed  Google Scholar 

  • Staniek K, Nohl H (2000) Are mitochondria a permanent source of reactive oxygen species? Biochim Biophys Acta Bioenerg 1460:268–275

    Article  CAS  Google Scholar 

  • Sun Y-L, Zhao Y, Hong X, Zhai Z-H (1999) Cytochrome c release and caspase activation during menadione-induced apoptosis in plants. FEBS Lett 462:317–321

    Article  CAS  PubMed  Google Scholar 

  • Talanian RV, Quinlan C, Trautz S, Hackett MC, Mankovich JA, Banach D, Ghayur T, Brady KD, Wong WW (1997) Substrate specificities of caspase family proteases. J Biol Chem 272:9677–9682

    Article  CAS  PubMed  Google Scholar 

  • Thordal-Christensen H, Zhang Z, Wei Y, Collinge DB (1997) Subcellular localization of H2O2 in plants. H2O2 accumulation in papillae and hypersensitive response during the barley powdery mildew interaction. Plant J 11:1187–1194

    Article  CAS  Google Scholar 

  • Tiwari BS, Belenghi B, Levine A (2002) Oxidative stress increased respiration and generation of reactive oxygen species, resulting in ATP depletion, opening of mitochondrial permeability transition, and programmed cell death. Plant Physiol 128:1271–1281

    Article  CAS  PubMed  Google Scholar 

  • Vacca RA, de Pinto MC, Valenti D, Passarella S, Marra E, De Gara L (2004) Production of reactive oxygen species, alteration of cytosolic ascorbate peroxidase, and impairment of mitochondrial metabolism are early events in heat shock-induced programmed cell death in tobacco Bright-Yellow 2 cells. Plant Physiol 134:1100–1112

    Article  CAS  PubMed  Google Scholar 

  • Vacca RA, Valenti D, Bobba A, Merafina RS, Passarella S, Marra E (2006) Cytochrome c is released in a reactive oxygen species-dependent manner and is degraded via caspase-like proteases in Tobacco BY-2 cells en route to heat shock-induced cell death. Plant Physiol 141:208–219

    Article  CAS  PubMed  Google Scholar 

  • Valle M, Malle P, Bouquelet S (1998) Evaluation of fish decomposition by liquid chromatographic assay of ATP degradation products. J AOAC Int 81:571–575

    CAS  Google Scholar 

  • van Doorn WG, Woltering EJ (2005) Many ways to exit? Cell death categories in plants. Trends Plant Sci 10:117–122

    PubMed  Google Scholar 

  • Vaux DL, Korsmeyer SJ (1999) Cell death in development. Cell 96:245–254

    Article  CAS  PubMed  Google Scholar 

  • Wang P, Duan W, Takabayashi A, Endo T, Shikanai T, Ye J-Y, Mi H (2006) Chloroplastic NAD(P)H dehydrogenase in tobacco leaves functions in alleviation of oxidative damage caused by temperature stress. Plant Physiol 141:465–474

    Article  CAS  PubMed  Google Scholar 

  • Xu Y, Hanson MR (2000) Programmed cell death during pollination-induced petal senescence in petunia. Plant Physiol 122:1323–1333

    Article  CAS  PubMed  Google Scholar 

  • Yip JY, Vanlerberghe GC (2001) Mitochondrial alternative oxidase acts to dampen the generation of active oxygen species during a period of rapid respiration induced to support a high rate of nutrient uptake. Physiol Plant 112:327–333

    Article  CAS  PubMed  Google Scholar 

  • Zhu J-K (2001) Plant salt tolerance. Trends Plant Sci 6:66–71

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors are grateful to Markela Katidou and Nikos Kourtis for excellent technical assistance. This work was supported by the National and European resources (EPEAEKII-Pythagoras), and COST858, COST FA065 Actions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalliopi A. Roubelakis-Angelakis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Andronis, E.A., Roubelakis-Angelakis, K.A. Short-term salinity stress in tobacco plants leads to the onset of animal-like PCD hallmarks in planta in contrast to long-term stress. Planta 231, 437–448 (2010). https://doi.org/10.1007/s00425-009-1060-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-009-1060-x

Keywords

Navigation