Skip to main content

Advertisement

Log in

Dynamics of protein expression during pollen germination in canola (Brassica napus)

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

The proteome of mature (MP) and in vitro germinating pollen (GP) of canola (Brassica napus) were analyzed using the DIGE technology with the objective of identifying proteins and their function in pollen germination. Of the 2,238 protein spots detected in gel images, 344 were differentially expressed in MP and GP samples of which 165 were subjected to MALDI-TOF/TOF and 130 were successfully identified using the NCBInr and Brassica EST databases. The major proteins up-regulated in GP, relative to MP, have roles in carbohydrate metabolism, protein metabolism, and cell wall remodeling. Others with roles in cytoskeleton dynamics, nucleotide and amino acid metabolism, signal transduction, and stress response also showed higher expression in GP. Proteins concerned with transcriptional regulation and ion transport were similar in MP and GP, and some catalases and LEA proteins were down-regulated in GP. A number of proteins including, oleosin, cruciferin, and enolase, were released into the pollen germination medium indicating their potential role in pollen–stigma interaction. Glycosylated proteins were also identified in MP and GP, but their protein profiles were not different. This study has documented the dynamics of protein expression during pollen germination and early tube growth in B. napus and provides insights into the fundamental mechanisms involved in these processes, and in cell growth, cell–cell communication, and cell signaling.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

2-DE:

2-Dimensional gel electrophoresis

DIGE:

Differential in-gel electrophoresis

MP:

Mature pollen

GP:

Germinating pollen

PGM:

Pollen germination medium

References

  • Baker A, Graham IA, Holdsworth M, Smith SM, Theodoulou FL (2006) Chewing the fat: beta-oxidation in signaling and development. Trends Plant Sci 11:124–132

    Article  PubMed  CAS  Google Scholar 

  • Becker JD, Boavida LC, Carneiro J, Haury M, Feijo JA (2003) Transcriptional profiling of Arabidopsis tissues reveals the unique characteristics of the pollen transcriptome. Plant Physiol 133:713–725

    Article  PubMed  CAS  Google Scholar 

  • Bosch M, Hepler PK (2006) Silencing of the tobacco pollen pectin methylesterase NtPPME1 results in retarded in vivo pollen tube growth. Planta 223:736–745

    Article  PubMed  CAS  Google Scholar 

  • Cai G, Moscatelli A, Cresti M (1997) Cytoskeletal organization and pollen tube growth. Trends Plant Sci 2:86–91

    Article  Google Scholar 

  • Čapková V, Zbrožek J, Tupý J (1994) Protein synthesis in tobacco pollen tubes: preferential synthesis of cell-wall 69 kDa and 66-kDa proteins. Sex Plant Reprod 7:57–66

    Article  Google Scholar 

  • Certal AC, Almeida RB, Carvalho LM, Wong E, Moreno N, Michard E, Carneiro J, Rodriguez-Leon J, Wu HM, Cheung AY, Feijo JA (2008) Exclusion of a proton ATPase from the apical membrane is associated with cell polarity and tip growth in Nicotiana tabacum pollen. Plant Cell 20:614–634

    Article  PubMed  CAS  Google Scholar 

  • Chen Y, Chen T, Shen S, Zheng M, Guo Y, Lin J, Baluška F, Šamaj J (2006) Differential display proteomic analysis of Picea meyeri pollen germination and pollen-tube growth after inhibition of actin polymerization by latrunculin B. Plant J 47:174–195

    Article  PubMed  CAS  Google Scholar 

  • Cheung AY, Wu H-M (2008) Structural and signaling networks for the polar cell growth machinery in pollen tubes. Annu Rev Plant Biol 59:547–572

    Article  PubMed  CAS  Google Scholar 

  • Dai S, Li L, Chen T, Chong K, Xue Y, Wang T (2006) Proteomic analyses of Oryza sativa mature pollen reveal novel proteins associated with pollen germination and tube growth. Proteomics 6:2504–2529

    Article  PubMed  CAS  Google Scholar 

  • Dai S, Chen T, Chong K, Xue Y, Liu S, Wang T (2007a) Proteomics identification of differentially expressed proteins associated with pollen germination and tube growth reveals characteristics of germinated Oryza sativa pollen. Mol Cell Proteomics 6:207–230

    PubMed  CAS  Google Scholar 

  • Dai S, Wang T, Yan X, Chen S (2007b) Proteomics of pollen development and germination. J Proteome Res 6:4556–4563

    Article  PubMed  CAS  Google Scholar 

  • de Graaf BHJ, Rudd JJ, Wheeler MJ, Perry RM, Bell EM, Osman K, Franklin FCH, Franklin-Tong VE (2006) Self-incompatibility in Papaver targets soluble inorganic pyrophosphatases in pollen. Nature 444:490–493

    Article  PubMed  Google Scholar 

  • Dearnaley JDW, Daggard GA (2001) Expression of polygalacturonase enzyme in germinating pollen of Brassica napus. Sex Plant Reprod 13:265–271

    Article  CAS  Google Scholar 

  • Drakakaki G, Zabotina O, Delgado I, Robert S, Keegstra K, Raikhel N (2006) Arabidopsis reversibly glycosylated polypeptides 1 and 2 are essential for pollen development. Plant Physiol 142:1480–1492

    Article  PubMed  CAS  Google Scholar 

  • Fernando DD (2005) Characterization of pollen tube development in eastern white pine (Pinus strobus) through proteomic analysis of differentially expressed proteins. Proteomics 5:4917–4926

    Article  PubMed  CAS  Google Scholar 

  • Franklin-Tong VE (1999) Signaling and the modulation of pollen tube growth. Plant Cell 11:727–738

    Article  PubMed  CAS  Google Scholar 

  • González-Melendi P, Uyttewaal M, Morcillo CN, Mora JRH, Fajardo S, Budar F, Lucas MM (2008) A light and electron microscopy analysis of the events leading to male sterility in Ogu-INRS CMS of rapeseed (Brassica napus). J Exp Bot 59:827–838

    Article  PubMed  Google Scholar 

  • Hancock JT, Henson D, Nyirenda M, Desikan R, Harrison J, Lewis M, Hughes J, Neill SJ (2005) Proteomic identification of glyceraldehyde 3-phosphate dehydrogenase as an inhibitory target of hydrogen peroxide in Arabidopsis. Plant Physiol Biochem 43:828–835

    Article  PubMed  CAS  Google Scholar 

  • Hepler PK, Vidali L, Cheung AY (2001) Polarized cell growth in higher plants. Annu Rev Cell Dev Biol 17:159–187

    Article  PubMed  CAS  Google Scholar 

  • Hiscock SJ, Allen AM (2008) Diverse cell signalling pathways regulate pollen–stigma interactions: the search for consensus. New Phytol 179:286–317

    Article  PubMed  CAS  Google Scholar 

  • Holdaway-Clarke T, Hepler PK (2003) Control of pollen tube growth: role of ion gradients and fluxes. New Phytol 159:539–563

    Article  CAS  Google Scholar 

  • Holmes-Davis R, Tanaka CK, Vensel WH, Hurkman WJ, McCormick S (2005) Proteome mapping of mature pollen of Arabidopsis thaliana. Proteomics 5:4864–4884

    Article  PubMed  CAS  Google Scholar 

  • Honys D, Twell D (2003) Comparative analysis of the Arabidopsis pollen transcriptome. Plant Physiol 132:640–652

    Article  PubMed  CAS  Google Scholar 

  • Honys D, Reňák D, Feciková J, Jedelský PL, Nebesářová J, Dobrev P, Čapková V (2009) Cytoskeleton-associated large RNP complexes in tobacco male gametophyte (EPPs) are associated with ribosomes and are involved in protein synthesis, processing and localization. J Proteome Res 8:2015–2031

    Article  CAS  Google Scholar 

  • Hrubá P, Honys D, Twell D (2005) Expression of β-galactosidase and β-xylosidase genes during microspore and pollen development. Planta 220:931–940

    Article  PubMed  Google Scholar 

  • Kerim T, Imin N, Weinman JJ, Rolfe BG (2003) Proteome analysis of male gametophyte development in rice anthers. Proteomics 3:738–751

    Article  PubMed  CAS  Google Scholar 

  • Kim YO, Kim JS, Kang H (2005) Cold-inducible zinc finger-containing glycine-rich RNA-binding proteins contributes to the enhancement of freezing tolerance in Arabidopsis thaliana. Plant J 42:890–900

    Article  PubMed  CAS  Google Scholar 

  • Konishi H, Maeshima M, Komatsu S (2005) Characterization of vacuolar membrane proteins changed in rice root treated with gibberellin. J Proteome Res 4:1775–1780

    Article  PubMed  CAS  Google Scholar 

  • Krichevsky A, Kozlovsky SV, Tian G-W, Chen M-H, Zaltsman A, Citovsky V (2007) How pollen tubes grow. Dev Biol 303:405–420

    Article  PubMed  CAS  Google Scholar 

  • Lee H, Guo Y, Ohta M, Xiong L, Stevenson B, Zhu JK (2002) LOS2, a genetic locus required for cold-responsive gene transcription encodes a bi-functional enolase. EMBO J 21:2692–2702

    Article  PubMed  CAS  Google Scholar 

  • Li J, Chen J, Zhang Z, Pan Y (2008) Proteome analysis of tea pollen (Camellia sinensis) under different storage conditions. J Agric Food Chem 56:7535–7544

    Article  PubMed  CAS  Google Scholar 

  • Lu M, Sautin YY, Holliday SL, Gluck SL (2004) The glycolytic enzyme aldolase mediates assembly, expression, and activity of vacuolar H+-ATPase. J Biol Chem 279:8732–8739

    Article  PubMed  CAS  Google Scholar 

  • Malhó R (2006) The pollen tube: a cellular and molecular perspective. Springer, Berlin

    Google Scholar 

  • Malhó R, Liu Q, Monteiro D, Rato C, Camacho L, Dinis A (2006) Signalling pathways in pollen germination and tube growth. Protoplasma 228:21–30

    Article  PubMed  Google Scholar 

  • Marouga R, David S, Hawkins E (2005) The development of the DIGE system: 2D fluorescence difference gel analysis technology. Anal Bioanal Chem 382:669–678

    Article  PubMed  CAS  Google Scholar 

  • Mascarenhas JP (1990) Gene activity during pollen development. Annu Rev Plant Physiol Plant Mol Biol 41:317–338

    Article  Google Scholar 

  • Mascarenhas JP (1993) Molecular mechanisms of pollen tube growth and differentiation. Plant Cell 5:1303–1314

    Article  PubMed  CAS  Google Scholar 

  • McCormick S (2004) Control of male gametophyte development. Plant Cell 16:S142–S153

    Article  PubMed  CAS  Google Scholar 

  • Miki-Hirosige H, Yamanaka Y, Nakamura S, Kurata S, Hirano H (2004) Changes of protein profiles during pollen development in Lilium longiflorum. Sex Plant Reprod 16:209–214

    Article  CAS  Google Scholar 

  • Minic Z (2008) Physiological roles of plant glycoside hydrolases. Planta 227:723–740

    Article  PubMed  CAS  Google Scholar 

  • Murphy DJ (2006) The extracellular pollen coat in members of the Brassicaceae: composition, biosynthesis, and functions in pollination. Protoplasma 228:31–39

    Article  PubMed  CAS  Google Scholar 

  • Neill S, Desikan R, Hancock J (2002) Hydrogen peroxide signaling. Curr Opin Plant Biol 5:388–395

    Article  PubMed  CAS  Google Scholar 

  • Noir S, Bräutigam A, Colby T, Schmidt J, Panstruga R (2005) A reference map of the Arabidopsis thaliana mature pollen proteome. Biochem Biophys Res Commun 337:1257–1266

    Article  PubMed  CAS  Google Scholar 

  • Park BJ, Liu ZC, Kanno A, Kameya T (2005) Increased tolerance to salt- and water-deficit stress in transgenic lettuce (Lactuca sativa L.) by constitutive expression of LEA. Plant Growth Regul 45:165–171

    Article  CAS  Google Scholar 

  • Pina C, Pinto F, Feijo JA, Becker JD (2005) Gene family analysis of the Arabidopsis pollen transcriptome reveals biological implications for cell growth, division control, and gene expression regulation. Plant Physiol 138:744–756

    Article  PubMed  CAS  Google Scholar 

  • Polowick PL, Sawhney VK (1990) Microsporogenesis in a normal line and in the ogu cytoplasmic male-sterile line of Brassica napus. I. The influence of high temperatures. Sex Plant Reprod 3:263–276

    Article  Google Scholar 

  • Robert LS, Allard S, Gerster JL, Cass L, Simmonds J (1993) Isolation and characterization of a polygalacturonase gene highly expressed in Brassica napus pollen. Plant Mol Biol 23:1273–1278

    Article  PubMed  CAS  Google Scholar 

  • Roberts IN, Gaude TC, Harrod G, Dickinson HG (1983) Pollen–stigma interactions in Brassica oleracea; a new pollen germination medium and its use in elucidating the mechanism of self-incompatibility. Theor Appl Genet 65:231–238

    Article  Google Scholar 

  • Ross JHE, Murphy DJ (1996) Characterization of anther-expressed genes encoding a major class of extracellular oleosin-like proteins in the pollen coat of Brassicaceae. Plant J 9:625–637

    Article  PubMed  CAS  Google Scholar 

  • Rubinstein AL, Marquez J, Suarez-Cervera M, Bedinger PA (1995) Extensin-like glycoproteins in the maize pollen tube wall. Plant Cell 7:2211–2225

    Article  PubMed  CAS  Google Scholar 

  • Schnurr JA, Storey KK, Jung HJ, Somers DA, Gronwald JW (2006) UDP-sugar pyrophosphorylase is essential for pollen development in Arabidopsis. Planta 224:520–532

    Article  PubMed  CAS  Google Scholar 

  • Scott RJ, Spielman M, Dickinson HG (2004) Stamen structure and function. Plant Cell 16:S46–S60

    Article  PubMed  CAS  Google Scholar 

  • Sheng A, Hu Z, Lu H, Wang X, Baluska F, Samaj J, Lin J (2006) Roles of ubiquitin/proteasome pathway in pollen tube growth with emphasis on MG132-induced alterations in ultrastructure, cytoskeleton, and cell wall components. Plant Physiol 141:1578–1590

    Article  PubMed  CAS  Google Scholar 

  • Sheoran IS, Sproule KA, Olson DJH, Ross ARS, Sawhney VK (2006) Proteome profile and functional classification of proteins in Arabidopsis thaliana (Landsberg erecta) mature pollen. Sex Plant Reprod 19:185–196

    Article  CAS  Google Scholar 

  • Sheoran IS, Ross ARS, Olson DJH, Sawhney VK (2007) Proteomic analysis of tomato (Lycopersicon esculentum) pollen. J Exp Bot 58:3525–3535

    Article  PubMed  CAS  Google Scholar 

  • Sheoran IS, Ross ARS, Olson DJH, Sawhney VK (2009) Differential expression of proteins in the Wild type and 7B–1 male-sterile mutant anthers of tomato (Solanum lycopersicum): a proteomic analysis. J Proteomics 71:624–636

    Article  PubMed  CAS  Google Scholar 

  • Shivanna KR (2003) Pollen biology and biotechnology. Science Publishers Inc., Enfield

    Google Scholar 

  • Shivanna KR, Sawhney VK (1995) Polyethylene glycol improves the in vitro growth of Brassica pollen tubes without loss in germination. J Exp Bot 46:1771–1774

    Article  CAS  Google Scholar 

  • Singh MB, Knox RB (1985) β-Galactosidase of Lilium pollen. Phytochem Anal 24:1639–1643

    Article  CAS  Google Scholar 

  • Sjodahl S, Rodin J, Rask L (1991) Characterization of the 12 s globulin complex of Brassica napus: Evolutionary relationship to other 11–12 s storage globulins. Eur J Biochem 196:617–621

    Article  PubMed  CAS  Google Scholar 

  • Sriram G, Martinez JA, McCabe ERB, Liao JC, Dipple KM (2005) Single-gene disorders: what role could moonlighting enzymes play? Am J Hum Genet 76:911–924

    Article  PubMed  CAS  Google Scholar 

  • Suen DF, Wu SS, Chang HC, Dhugga KS, Hung AH (2003) Cell wall reactive proteins in the wall of maize pollen: potential role in pollen tube growth on the stigma and through the style. J Biol Chem 278:43672–43681

    Article  PubMed  CAS  Google Scholar 

  • Taylor LP, Hepler PK (1997) Pollen germination and tube growth. Annu Rev Plant Physiol Plant Mol Biol 48:461–491

    Article  PubMed  CAS  Google Scholar 

  • Treacy BK, Hattori J, Prud’homme I, Barbour E, Boutilier K, Baszczynski CL, Huang B, Johnson DA, Miki BL (1997) Bnm1, a Brassica pollen-specific gene. Plant Mol Biol 34:603–611

    Article  PubMed  CAS  Google Scholar 

  • Vidali L, Hepler PK (1997) Characterization and localization of profilin in pollen grains and tubes of Lilium longiflorum. Cell Motil Cytoskeleton 36:323–338

    Article  PubMed  CAS  Google Scholar 

  • Wang Y, Zhang WZ, Song LF, Zou JJ, Su Z, Wu WH (2008) Transcriptome analyses show changes in gene expression to accompany pollen germination and tube growth in Arabidopsis. Plant Physiol 148:1201–1211

    Article  PubMed  CAS  Google Scholar 

  • Watanabe M, Hatakeyama K, Takada Y, Hinata K (2001) Molecular aspects of self-incompatibility in Brassica species. Plant Cell Physiol 42:560–565

    Article  PubMed  CAS  Google Scholar 

  • Weterings K, Russell SD (2004) Experimental analysis of the fertilization process. Plant Cell 16:S107–S108

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This research was supported by a Natural Sciences and Engineering Research Council of Canada Discovery grant to VKS, and by funding for mass spectrometry and proteomics equipment from the National Research Council of Canada to ARSR. The authors thank Dr. V. Misra of the Department of Veterinary Microbiology, University of Saskatchewan, for the use of Typhoon Variable Mode Imager.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Vipen K. Sawhney.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sheoran, I.S., Pedersen, E.J., Ross, A.R.S. et al. Dynamics of protein expression during pollen germination in canola (Brassica napus). Planta 230, 779–793 (2009). https://doi.org/10.1007/s00425-009-0983-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-009-0983-6

Keywords

Navigation