Skip to main content
Log in

Evidence for programmed cell death and activation of specific caspase-like enzymes in the tomato fruit heat stress response

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

The tomato (Lycopersicon esculentum) fruit is the best available model to study the stress response of fleshy fruit. Programmed cell death (PCD) plays an important role in stress responses in mammals and plants. In this study, we provide evidence that PCD is triggered in the tomato fruit heat stress response by detection of the sequential diagnostic PCD events, including release of cytochrome c, activation of caspase-like proteases and the presence of TUNEL-positive nuclei. Investigating the time course of these events for 12 h after heat treatment indicated that cytochrome c release and caspase-like protease activation occurred rapidly and were consistent with the onset of DNA fragmentation. In addition, LEHDase and DEVDase enzymes were specifically activated in tomato fruit pericarp during the heat treatment and recovery time. There was no significant activation of YVADase or IETDase proteases. Preincubation of pericarp discs with the broad-spectrum, cell-permeable caspase inhibitor Z-VAD-FMK, suppressed heat-induced cell death measured by trypan blue, accompanied by a decrease in LEHDase and DEVDase activities.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

AMC:

7-Amino-4-trifluoromethyl coumarin

CHO:

Aldehyde

COX:

Cytochrome c oxidase

DAPI:

4′-6-Diamidino-2-phenylindole

DEVD:

N-acetyl-Asp-Glu-Val-Asp

HS:

Heat stress

IETD:

N-acetyl-Ile-Glu-Thr-Asp

LEHD:

N-acetyl-Leu-Glu-His-Asp

PCD:

Programmed cell death

TUNEL:

Terminal deoxynucleotidyl transferase mediated dUTP nick end labeling

YVAD:

N-acetyl-Tyr-Val-Ala-Asp

Z-VAD-FMK:

Z-Val-Ala-Asp(OCH3)-Fluoromethylketone

References

  • Baker CJ, Mock NM (1994) An improved method for monitoring cell death in cell suspension and leaf disc assays using evans blue. Plant Cell Tiss Org Cult 39:7–12

    Article  Google Scholar 

  • Baliga BC, Read SH, Kumar S (2004) The biochemical mechanism of caspase-2 activation. Cell Death Differ 11:1234–1241

    Article  PubMed  CAS  Google Scholar 

  • Balk J, Leaver CJ, McCabe PF (1999) Translocation of cytochrome c from the mitochondria to the cytosol occurs during heat induced programmed cell death in cucumber plants. FEBS Lett 463:151–154

    Article  PubMed  CAS  Google Scholar 

  • Boatright KM, Renatus M, Stennicke HR, Scott FL, Sperandio S, Shin H, Pedersen IM, Ricci JE, Edris WA, Sutherlin DP, Green DR, Salvesen GS (2003) A unified model for apical caspase activation. Mol Cell 11:529–541

    Article  PubMed  CAS  Google Scholar 

  • Bosch M, Franklin-Tong VE (2007) Temporal and spatial activation of caspase-like enzymes induced by self-incompatibility in Papaver pollen. Proc Natl Acad Sci USA 104:18327–18332

    Article  PubMed  CAS  Google Scholar 

  • Bossy-Wetzel E, Newmeiyer DD, Green DR (1998) Mitochondrial cytochrome c release in apoptosis occurs upstream of DEVD-specific caspase activation and independently of mitochondrial transmembrane depolarization. EMBO J 17:37–49

    Article  PubMed  CAS  Google Scholar 

  • Bozhkov PV, Suarez MF, Filonova LH, Daniel G, Zamyatnin AA Jr, Rodriguez-Nieto S, Zhivotovsky B, Smertenko A (2005) Cysteine protease mcII-Pa executes programmed cell death during plant embryogenesis. Proc Natl Acad Sci USA 102:14463–14468

    Article  PubMed  CAS  Google Scholar 

  • Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Chen HM, Zhou J, Dai YR (2000) Cleavage of lamin-like proteins in vivo and in vitro apoptosis of tobacco protoplasts induced by heat shock. FEBS Lett 480:165–168

    Article  PubMed  CAS  Google Scholar 

  • Coffeen WC, Wolpert TJ (2004) Purification and characterization of serine proteases that exhibit caspase-like activity and are associated with programmed cell death in Avena sativa. Plant Cell 16:857–873

    Article  PubMed  CAS  Google Scholar 

  • Danon A, Rotari VI, Gordon A, Mailhac N, Gallois M (2004) Ultraviolet-C overexposure induces programmed cell death in Arabidopsis, which is mediated by caspase-like activity and which can be suppressed by caspase inhibitors, p35 and defender against apoptotic death. J Biol Chem 279:779–787

    Article  PubMed  CAS  Google Scholar 

  • De Jong AJ, Hoeberichts FA, Yakimova ET, Maximova E, Woltering EJ (2000) Chemical-induced induced apoptotic cell death in tomato cells: involvement of caspase-like proteases. Planta 11:656–662

    Article  Google Scholar 

  • Filonova LH, Bozhkov PV, Brukhin VB, Daniel G, Zhivotovsky B, Arnold SV (2000) Two waves of programmed cell death occur during formation and development of somatic embryos in the gymnosperm, Norway spruce. J Cell Sci 113:4399–4411

    PubMed  CAS  Google Scholar 

  • Fray RG, Grierson D (1993) Identification and genetic analysis of normal and mutant phytoene synthase genes of tomato by sequencing, complementation and co-suppression. Plant Mol Biol 22:589–602

    Article  PubMed  CAS  Google Scholar 

  • Fulda S, Meyer E, Friesen S, Susin SA, Kroemer G, Debatin KM (2001) Cell type specific involvement of death receptor and mitochondrial pathways in drug-induced apoptosis. Oncogene 20:1063–1075

    Article  PubMed  CAS  Google Scholar 

  • Giovannoni JJ (2001) Molecular biology of fruit maturation and ripening. Annu Rev Plant Physiol Plant Mol Biol 52:725–749

    Article  PubMed  CAS  Google Scholar 

  • Guerrero AD, Chen M, Wang J (2008) Delineation of the caspase-9 signaling cascade. Apoptosis 13:177–186

    Article  PubMed  CAS  Google Scholar 

  • Hatsugai N, Kuroyanagi M, Yamada K, Meshi T, Tsuda S, Kondo M, Nishimura M, Hara-Nishimura I (2004) A plant vacuolar protease, VPE, mediates virus-induced hypersensitive cell death. Science 305:855–858

    Article  PubMed  CAS  Google Scholar 

  • He R, Drury GE, Rotari VI, Gordon A, Willer M, Farzaneh T, Woltering EJ, Gallois P (2008) Metacaspase-8 modulates programmed cell death induced by ultraviolet light and H2O2 in Arabidopsis. J Biol Chem 283:774–783

    Article  PubMed  CAS  Google Scholar 

  • Iwahashi Y, Horigane AK, Yoza K, Nagata T, Hosoda H (1999) The study of heat stress in tomato fruits by NMR microimaging. Magn Reson Imaging 17:767–772

    Article  PubMed  CAS  Google Scholar 

  • Jiang XJ, Wang XD (2004) Cytochrome c-mediate apoptosis. Annu Rev Biochem 73:87–106

    Article  PubMed  CAS  Google Scholar 

  • Johnson CR, Jarvis WD (2004) Caspase-9 regulation: an update. Apoptosis 9:423–427

    Article  PubMed  CAS  Google Scholar 

  • Kawai-Yamada M, Ohmori Y, Uchimiya H (2004) Dissection of Arabidopsis Bax inhibitor-1 suppressing Bax-, hydrogen peroxide-, and salicylic acid-induced cell death. Plant Cell 16:21–32

    Article  PubMed  CAS  Google Scholar 

  • Kim M, Lim JH, Ahn CS, Park K, Kim GT, Kim WT, Pai HS (2006) Mitochondria-associated hexokinases play a role in the control of programmed cell death in Nicotiana benthamiana. Plant Cell 18:2341–2355

    Article  PubMed  CAS  Google Scholar 

  • Li P, Nijhawan D, Budihardjo I, Srinivasula SM, Ahmad M, Alnemri ES, Wang XD (1997) Cytochrome c and dATP-dependent formation of Apaf-1/Caspase-9 complex initiates an apoptotic protease cascade. Cell 91:479–489

    Article  PubMed  CAS  Google Scholar 

  • Lurie A, Handros A, Fallik E, Shapira R (1996) Reversible inhibition of tomato fruit gene expression at high temperature. Plant Physiol 110:1207–1214

    PubMed  CAS  Google Scholar 

  • Madeo F, Herker E, Maldener C, Wissing S, Lachelt S, Herlan M, Fehr M, Lauber K, Sigrist SJ, Wesselborg S, Frohlich KU (2002) A caspase-related protease regulates apoptosis in yeast. Mol Cell 9:911–917

    Article  PubMed  CAS  Google Scholar 

  • Oaull RE, Chen NJ (2000) Heat treatment and fruit ripening. Post Biol Tech 21:21–37

    Article  Google Scholar 

  • Overmyer K, Brosche M, Pellinen R, Kuittinen T, Tuominen H, Ahlfors R, Keinanen M, Saarma M, Scheel D, Kangasjarvi J (2005) Ozone-induced programmed cell death in the Arabidopsis radical-induced cell death1 mutant. Plant Physiol 137:1092–1104

    Article  PubMed  CAS  Google Scholar 

  • Palma T, Marangoni AG, Stanley DW (1995) Environmental stresses affect tomato microsomal membrane function differently than natural ripening and senescence. Post Biol Tech 6:257–273

    Article  CAS  Google Scholar 

  • Pan JW, Zhu MY, Chen H (2001) Aluminum-induced cell death in root-tip cells of barley. Environ Exp Bot 46:71–79

    Article  PubMed  CAS  Google Scholar 

  • Polenta G, Lucangeli C, Budde C, Vonzalez CB, Murray R (2006) Heat and anaerobic treatments affected physiological and biochemical parameters in tomato fruits. LWT Food Sci Technol 39:27–34

    Article  CAS  Google Scholar 

  • Renatus M, Stennicke HR, Scott FL, Liddington RC, Salvesen GS (2001) Dimer formation drives the activation of the cell death protease caspase 9. Proc Natl Acad Sci USA 98:14250–14255

    Article  PubMed  CAS  Google Scholar 

  • Riedl SJ, Salvesen GS (2007) The apoptosome: signaling platform of cell death. Nat Rev Mol Cell Biol 8:405–414

    Article  PubMed  CAS  Google Scholar 

  • Rogers HJ (2006) Programmed cell death in floral organs: How and why do flowers die? Ann Bot 97:309–315

    Article  PubMed  CAS  Google Scholar 

  • Sabehat A, Weiss D, Lurie S (1996) The correlation between heat shock protein accumulation and persistence and chilling tolerance in tomato fruit. Plant Physiol 110:531–537

    Article  PubMed  CAS  Google Scholar 

  • Saijo N (1973) A spectrophotometric quantitation of cytotoxic action of antiserum and complement by trypan blue. Immunology 24:683–690

    PubMed  CAS  Google Scholar 

  • Saltveit ME (1989) Effect of alcohols and their interaction with ethylene on the ripening of epidermal pericarp discs of tomato fruit. Plant Physiol 90:167–174

    Article  PubMed  CAS  Google Scholar 

  • Samadi L, Behboodi BS (2006) Fusaric acid induces apoptosis in saffron root-tip cells: roles of caspase-like activity, cytochrome c, and H2O2. Planta 225:223–234

    Article  PubMed  CAS  Google Scholar 

  • Sanmartin M, Jaroszewski L, Raikhel NV, Rojo E (2005) Caspases. Regulating death since the origin of life. Plant Physiol 137:841–847

    Article  PubMed  CAS  Google Scholar 

  • Slee EA, Harte MT, Kluck RM, Wolf BB, Casiano CR, Newmeyer DD, Wang HG, Reed JC, Nicholson DW, Alnemri ES, Green DR, Martin SJ (1999) Ordering the cytochrome c-initiated caspase cascade: hierarchical activation of caspases-2, -3, -6, -7, -8, and -10 in a caspase-9-dependent manner. J Cell Biol 144:281–292

    Article  PubMed  CAS  Google Scholar 

  • Thomas SG, Franklin-Tong VE (2004) Self-incompatibility triggers programmed cell death in Papaver pollen. Nature 429:305–309

    Article  PubMed  CAS  Google Scholar 

  • Vacca RA, Valenti D, Bobba A, Merafina RS, Passarella S, Marra (2006) Cytochrome c is released in a reactive oxygen species-dependent manner and is degraded via caspase-like proteases in tobacco Bright-Yellow 2 Cells en route to heat shock-induced cell death. Plant Physiol 141:208–219

    Article  PubMed  CAS  Google Scholar 

  • Whitlow TH, Bassuk NL, Ranney TG, Reichert DL (1992) An improved method for using electrolyte leakage to assess membrane competence in plant tissues. Plant Physiol 98:198–205

    Article  PubMed  CAS  Google Scholar 

  • Woltering EJ, van der Bent A, Hoeberichts FA (2002) Do plant caspases exist? Plant Physiol 130:1764–1769

    Article  PubMed  CAS  Google Scholar 

  • Xu Y, Hanson MR (2000) Programmed cell death during pollination-induced petal senescence in petunia. Plant Physiol 122:1323–1334

    Article  PubMed  CAS  Google Scholar 

  • Yahia EM, Soto-Zamora G, Brecht JK, Gardea A (2007) Postharvest hot air treatment effects on the antioxidant system in stored mature-green tomatoes. Post Biol Tech 44:107–115

    Article  CAS  Google Scholar 

  • Yao N, Eisfelder BJ, Marvin J, Greenberg JT (2004) The mitochondrion—an organelle commonly involved in programmed cell death in Arabidopsis thaliana. Plant J 40:596–610

    Article  PubMed  CAS  Google Scholar 

  • Zuppini A, Bugno V, Baldan B (2006) Monitoring programmed cell death triggered by mild heat shock in soybean-cultured cells. Funct Plant Biol 33:617–662

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by grants from the National Nature Science Foundation of China (nos. 30500352 and 30430490) and a grant from the 11th Five-year Plan of the China Science and Technology Support Programme (2006BAD22B01).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yun-Bo Luo.

Additional information

Gui-Qin Qu and Xiang Liu contributed equally to this work.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Qu, GQ., Liu, X., Zhang, YL. et al. Evidence for programmed cell death and activation of specific caspase-like enzymes in the tomato fruit heat stress response. Planta 229, 1269–1279 (2009). https://doi.org/10.1007/s00425-009-0908-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-009-0908-4

Keywords

Navigation