Skip to main content
Log in

Dissection of heat-induced systemic signals: superiority of ion fluxes to voltage changes in substomatal cavities

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Using non-invasive ion-selective microprobes, that were placed in substomatal cavities, long-distance signalling has been investigated in intact Hordeum vulgare and Vicia faba seedlings. Heat (flame), applied to one leaf (S-leaf), triggers apoplastic ion activity (pH, pCa, pCl) transients in a distant leaf (T-leaf), all largely independent of simultaneously occurring action potential-like voltage changes. While apoplastic pCa and pH increase (Ca2+-, H+-activities decrease), pCl decreases (Cl-activity increases). As the signal transfer from the S- to the T-leaf is too fast to account for mass flow, the heat-induced pressure change is primarily responsible for changes in voltage (H+ pump deactivation) as well as for the ion fluxes. The pCa transient precedes the pCl- and pH responses, but not the voltage change. Since the apoplastic pCl decrease (Cl increase) occurs after the pCa increase (Ca2+ decrease) and after the depolarization, we argue that the Cl efflux is a consequence of the Ca2+ response, but has no part in the depolarization. Kinetic analysis reveals that pH- and pCl changes are interrelated, indicated by the action of the anion channel antagonist NPPB, which inhibits both pCl- and pH changes. It is suggested that efflux of organic anions into the apoplast causes the pH increase rather than the deactivation of the plasma membrane H+ pump. Since there is considerably more information in ion activity changes than in a single action- or variation potential and heat-induced ion fluxes occur more reliably than voltage changes, released by milder stimuli, they are considered systemic signalling components superior to voltage.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AP:

Action potential

NPPB:

5-Nitro-2-(3-phenylpropylamino)benzoic acid

S-leaf:

Stimulated leaf

T-leaf:

Target leaf

VP:

Variation potential

References

  • Alpi A, Amrhein N, Bertl A, Blatt MR, Blumwald E, Cervone F, Dainty J, De Michelis MI, Epstein E, Galston AW, Goldsmith MHM, Hawes C, Hell R, Hetherington A, Hofte H, Juergens G, Leaver CJ, Moroni A, Murphy A, Oparka K, Perata P, Quader H, Rausch T, Ritzenthaler C, Rivetta A, Robinson DG, Sanders D, Scheres B, Schumacher K, Sentenac H, Slayman CL, Soave C, Somerville C, Taiz L, Thiel G, Wagner R (2007) Plant neurobiology: no brain, no gain? Trends Plant Sci 12:135–136

    Article  PubMed  CAS  Google Scholar 

  • Brenner ED, Stahlberg R, Mancuso S, Vivanco J, Baluska F, van Volkenburgh E (2006) Plant neurobiology: an integrated view of plant signaling. Trends Plant Sci 11:413–419

    Article  PubMed  CAS  Google Scholar 

  • Davies E (1987) Action potentials as multifunctional signals in plants: a unifying hypothesis to explain apparently disparate wound responses. Plant Cell Environ 10:623–631

    Article  Google Scholar 

  • Davies E (2004) New functions for electrical signals in plants. New Phytol 161:607–610

    Article  Google Scholar 

  • Davies E (2006) Electrical signals in plants. In: Volkov AG (ed) Plant electrophysiology: theory and methods. Springer, Heidelberg, pp 407–422

    Chapter  Google Scholar 

  • Dziubinska H, Trebacz K, Zawadzki T (2001) Transmission route for action potentials and variation potentials in Helianthus annuus L. J Plant Physiol 158:1167–1172

    Article  CAS  Google Scholar 

  • Felle HH (2006) Apoplastic pH during low-oxygen stress in barley. Ann Bot 98:1085–1093

    Article  PubMed  CAS  Google Scholar 

  • Felle HH, Zimmermann MR (2007) Systemic signalling in barley through action potentials. Planta 226:203–214

    Article  PubMed  CAS  Google Scholar 

  • Felle HH, Hanstein S, Steinmeyer R, Hedrich R (2000) Dynamics of ion activities in the apoplast of the sub-stomatal cavity of intact Vicia faba leaves during stomatal closure evoked by ABA and darkness. Plant J 24:297–304

    Article  PubMed  CAS  Google Scholar 

  • Felle HH, Herrmann A, Hückelhoven R, Kogel K-H (2004) Apoplastic pH signaling in barley leaves attacked by the powdery mildew fungus Blumeria graminis f. sp. hordei. Mol Plant Microbe Interact 17:118–123

    Article  PubMed  CAS  Google Scholar 

  • Felle HH, Herrmann A, Hückelhoven R, Kogel K-H (2005) Root-to-shoot signalling: apoplastic alkalinization, a general stress signal and defence factor in barley (Hordeum vulgare). Protoplasma 227:17–24

    Article  PubMed  CAS  Google Scholar 

  • Fromm J, Spanswick R (1993) Characteristics of action potentials in willow (Salix viminalis L). J Exp Bot 44:1119–1125

    Article  Google Scholar 

  • Grabov A, Blatt MR (1998) Co-ordination of signalling elements in guard cell ion channel control. J Exp Bot 49:351–360

    Article  Google Scholar 

  • Grignon C, Sentenac H (1991) pH and ionic conditions in the apoplast. Annu Rev Plant Physiol 42:103–128

    Article  CAS  Google Scholar 

  • Hanstein S, Felle HH (1999) The influence of atmospheric NH3 on the apoplastic pH of green leaves: a non-invasive approach with pH-sensitive microelectrodes. New Phytol 143:333–338

    Article  CAS  Google Scholar 

  • Hanstein S, Felle HH (2002) CO2-triggered chloride release from guard cells in intact fava bean leaves. Kinetics of the onset of stomatal closure. Plant Physiol 130:940–950

    Article  PubMed  CAS  Google Scholar 

  • He DY, Yazaki Y, Nishizawa Y, Takai R, Sakano K, Shibuya N, Minami E (1998) Gene activation by cytoplasmic acidification in suspension-cultured rice cells in response to the elicitor N-acetylchitoheptaose. Mol Plant Microbe Interact 11:1167–1174

    Article  CAS  Google Scholar 

  • Hedrich R, Marten I, Lohse G, Dietrich P, Winter H, Lohaus G, Heldt HW (1994) Malate-sensitive anion channels enable guard cells to sense changes in the ambient CO2 concentration. Plant J 6:741–748

    Article  CAS  Google Scholar 

  • Herde O, Pena-Cortes H, Fuss H, Willmitzer L, Fisahn J (1999) Effects of mechanical wounding, current application, and heat treatment on chlorophyll fluorescence and pigment position in tomato plants. Physiol Plant 105:179–184

    Article  CAS  Google Scholar 

  • Johannes E, Felle HH (1985) Transport of basic amino acids in Riccia fluitans: evidence for a second binding site. Planta 166:244–251

    Article  CAS  Google Scholar 

  • Julien JL, Desbiez M-O, De Jaegher G, Frachisse JM (1991) Characteristics of the wave of depolarization induced by wounding in Bidens pilosa L. J Exp Bot 42:131–137

    Article  Google Scholar 

  • Kikuyama M, Tazawa M (2001) Mechanosensitive Ca2+ release from intracellular stores in Nitella flexilis. Plant Cell Physiol 42:358–365

    Article  PubMed  CAS  Google Scholar 

  • Kinraide TB, Etherton B (1980) Electrical evidence for different mechanisms of uptake for basic, neutral, and basic amino acids in oat coleoptiles. Plant Physiol 65:1085–1089

    Article  PubMed  CAS  Google Scholar 

  • Krasznai Z, Morisawa M, Krasznai ZT, Morisawa S, Inaba K, Bazsane ZK, Rubovsky B, Bodnar B, Borsos A, Marian T (2003) Gadolinium, a mechano-sensitive channel blocker, inhibits osmosis-initiated motility of sea- and freshwater fish sperm, but does not affect human or ascidian sperm motility. Cell Mot Cytoskel 55:232–243

    Article  CAS  Google Scholar 

  • Lautner S, Grams TEE, Matyssek R, Fromm J (2005) Characteristics of electrical signals in poplar and responses in photosynthesis. Plant Physiol 138:2200–2209

    Article  PubMed  CAS  Google Scholar 

  • Lew RR (1998) Mapping fungal ion channel locations. Fung Gen Biol 24:69–76

    Article  CAS  Google Scholar 

  • Malone M (1996) Rapid, long-distance signal transmission in higher plants. Adv Bot Res 22:163–228

    Article  CAS  Google Scholar 

  • Mancuso S (1999) Hydraulic and electrical transmission of wound-induced signals in Vitis vinifera. Aust J Plant Physiol 26:55–61

    Article  Google Scholar 

  • Oja V, Savchenko G, Jakob B, Heber U (1999) pH and buffer capacities of apoplastic cell compartments in leaves. Planta 209:239–249

    Article  PubMed  CAS  Google Scholar 

  • Pantoja O, Smith JAC (2002) Sensitivity of the plant vacuolar malate channel to pH, Ca2+ and anion channel blockers. J Membr Biol 1:31–42

    Article  CAS  Google Scholar 

  • Pickard BG (1973) Action potentials in higher plants. Bot Rev 39:172–201

    Article  Google Scholar 

  • Rhodes JD, Thain JF, Wildon DC (1996) The pathway for systemic electrical signal conduction in the wounded tomato plant. Planta 200:50–57

    Article  CAS  Google Scholar 

  • Rhodes JD, Thain JF, Wildon DC (1997) Evidence for physically distinct systemic signalling pathways in the wounded tomato plant. Ann Bot 84:109–116

    Article  Google Scholar 

  • Roblin G (1985) Analysis of the variation potential induced by wounding in plants. Plant Cell Physiol 26:255–261

    Google Scholar 

  • Ryan PR, Dong B, Watt M, Kataoka T, Delhaize E (2003) Strategies to isolate transporters that facilitate organic anion efflux from plant cells. Plant Soil 248:61–69

    Article  CAS  Google Scholar 

  • Schmidt C, Schroeder JI (1994) Anion selectivity of slow anion channels in the plasma membrane of guard cells–large nitrate permeability. Plant Physiol 106:383–391

    PubMed  CAS  Google Scholar 

  • Shepard VA, Beilby MJ, Shimmen T (2002) Mechanosensory ion channels in charophyte cells: the response to touch and salinity stress. Eur Biophys J 31:341–355

    Article  CAS  Google Scholar 

  • Shiina T, Tazawa M (1987) Ca2+ activated Cl channel in plasmalemma of Nitellopsis obtusa. J Membr Biol 99:137–146

    Article  CAS  Google Scholar 

  • Stahlberg R, Cosgrove DJ (1997) The propagation of the slow wave potential in pea epicotyls. Plant Physiol 113:209–217

    PubMed  CAS  Google Scholar 

  • Stanković B, Davies E (1996) Both action potentials and variation potentials induce proteinase inhibitor gene expression in tomato. FEBS Lett 390:275–279

    Article  PubMed  Google Scholar 

  • Stewart PA (1983) Modern quantitative acid-base chemistry. Can J Physiol Pharmacol 61:1444–1461

    PubMed  CAS  Google Scholar 

  • Thibault G, Amiri F, Garcia R (1999) The regulation of natriuretic peptide secretion by the heart. Annu Rev Physiol 61:193–217

    Article  PubMed  CAS  Google Scholar 

  • Trebacz K, Simonis W, Schönknecht G (1994) Cytoplasmic Ca2+, K+, Cl, and NO3 activities in the liverwort Conocephalum conicum L. at rest and during action potentials. Plant Physiol 106:1073–1084

    PubMed  CAS  Google Scholar 

  • Trewavas A (2007) Response to Alpi et al.: Plant neurobiology–all metaphors have a value. Trends Plant Sci 12:231–233

    Article  PubMed  CAS  Google Scholar 

  • Ullrich CI, Novacky AJ (1992) Recent aspects of ion-induced pH changes. Curr Top Plant Biochem Physiol 11:231–248

    CAS  Google Scholar 

  • Vodeneev VA, Opritov VA, Pyatygin SS (2006) Reversible changes of extracellular pH during action potential generation in a higher plant Cucurbita pepo. Russ J Plant Physiol 53:481–487

    Article  CAS  Google Scholar 

  • Walling LL (2000) The myriad plant responses to herbivores. J Plant Growth Reg 19:195–216

    CAS  Google Scholar 

  • Wayne R (1994) The excitability of plant cells: with special emphasis on Characean internodal cells. Bot Rev 60:265–367

    Article  PubMed  CAS  Google Scholar 

  • Wildon DC, Thain JF, Minchin PEH, Gubb IR, Reilly AJ, Skipper YD, Doherty HM, O’Donnell PJ, Bowles DJ (1992) Electrical signalling and systemic proteinase inhibitor induction in the wounded plant. Nature 360:62–65

    Article  CAS  Google Scholar 

  • Wilkinson S (1999) pH as a stress signal. Plant Growth Reg 29:87–99

    Article  CAS  Google Scholar 

  • Zhang W, Fan L-M, Wu W-H (2007) Osmo-sensitive and stretch-activated calcium-permeable channels in Vicia faba guard cells are regulated by actin dynamics. Plant Physiol 143:1140–1151

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The financial support of this work by the “Deutsche Forschungsgemeinschaft” (Fe 213/15-1,2) is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hubert H. Felle.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zimmermann, M.R., Felle, H.H. Dissection of heat-induced systemic signals: superiority of ion fluxes to voltage changes in substomatal cavities. Planta 229, 539–547 (2009). https://doi.org/10.1007/s00425-008-0850-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-008-0850-x

Keywords

Navigation