Skip to main content
Log in

Molecular characterization and temporal expression analyses indicate that the MIC (Meloidogyne Induced Cotton) gene family represents a novel group of root-specific defense-related genes in upland cotton (Gossypium hirsutum L.)

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

The molecular events underlying the resistance of Upland cotton (Gossypium hirsutum L.) to the root-knot nematode (RKN) are largely unknown. In this report, we further characterize the previously identified MIC3 gene including the identification of 14 related MIC cDNAs in nematode-infected roots of allotetraploid cotton that show >85% identity with MIC3. A time-course analysis of RKN infection in resistant and susceptible cotton lines showed that maximum MIC transcript accumulation occurred immediately prior to the phenotypic manifestation of resistance. MIC expression was not induced by mechanical wounding or by virulent reniform nematode infection. MIC expression was undetectable in cotton leaves undergoing a hypersensitive response to Xanthomonas campestris. A time-course analysis of defense gene expression (PR10, ERF5, CDNS, LOX1, POD4, POD8) in resistant and susceptible cotton roots showed that RKN infection specifically elicits the induction of MIC in resistant roots and not other common defense-signaling pathways. These results suggest that cotton resistance to RKN involves novel defense-signaling pathways and further supports the idea that the MIC genes are intimately involved in this resistance response and represent a group of root-specific defense-related genes in cotton.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1 
Fig. 2 
Fig. 3 
Fig. 4
Fig. 5

Similar content being viewed by others

Abbreviations

RKN:

Root-knot nematode

MIC:

Meloidogyne-induced cotton

References

  • Alchanati I, Acreman Patel JA, Liu J, Benedict CR, Stipanovic RD, Bell AA, Cui Y, Magill CW (1998) The enzymatic cyclization of nerolidyl diphosphate by δ-cadinene synthase from cotton stele tissue infected with Verticillium dahliae. Phytochemistry 47:961–967

    Article  CAS  Google Scholar 

  • Apel K, Hirt H (2004) Reactive oxygen species: metabolism, oxidative stress, and signal transduction. Annu Rev Plant Biol 55:373–399

    Article  PubMed  CAS  Google Scholar 

  • Blasingame D, Patel MV (2003) Cotton disease loss estimate committee report. In: Proceedings of Beltwide Cotton Conference, Nashville, 6–10 January 2003. National Cotton Council, Memphis

  • Callahan FE, Jenkins JN, Creech RG, Lawrence GW (1997) Changes in cotton root proteins correlated with resistance to root knot nematode development. J Cot Sci 1:38–47

    CAS  Google Scholar 

  • Callahan FE, Zhang X-D, Ma D-P, Jenkins JN, Hayes RW, Tucker ML (2004) Comparison of MIC-3 protein accumulation in response to root-knot nematode infection in cotton lines displaying a range of resistance levels. J Cot Sci 8:186–190

    CAS  Google Scholar 

  • Creech RG, Jenkins JN, Tang B, Lawrence GW, McCarty JC (1995) Cotton resistance to root-knot nematode: I. Penetration and reproduction. Crop Sci 35:365–368

    Article  Google Scholar 

  • Creech RG, Jenkins JN, Lawrence GW, McCarty JC (1998) Nematode resistance in cotton. In: Bajaj YPS (ed) Biotechnology in agriculture and forestry, vol 42. Cotton, Springer, Berlin

  • Cronn R, Cedroni M, Grover C, Haskelkorn T, Wendel JF (2002) PCR-mediated recombination in a polyploid plant. Theor Appl Genet 104:482–489

    Article  PubMed  CAS  Google Scholar 

  • Davis GD, Essenberg M (1995) (+)-δ-Cadinene is a product of sesquiterpene cyclase activity in cotton. Phytochemistry 39:553–567

    Article  CAS  Google Scholar 

  • Delannoy E, Jalloul A, Assigbetsé K, Marmey P, Geiger JP, Lherminier J, Daniel JF, Martinez C, Nicole M (2003) Activity of class III peroxidases in the defense of cotton to bacterial blight. Mol Plant Microbe Interact 16:1030–1038

    Article  PubMed  CAS  Google Scholar 

  • Delannoy E, Lyon BR, Marmey P, Jalloul A, Daniel JF, Montillet JL, Essenberg M, Nicole M (2005) Resistance of cotton towards Xanthomonas campestris pv. Malvacearum. Annu Rev Phytopathol 43:63–82

    Article  PubMed  CAS  Google Scholar 

  • Delannoy E, Marmey P, Jalloul A, Etienne H, Nicole M (2006) Molecular analysis of class III peroxidases from cotton. J Cot Sci 10:53–60

    CAS  Google Scholar 

  • Dowd C, Wilson IW, McFadden H (2004) Gene expression profile changes in cotton root and hypocotyl tissues in response to infection with Fusarium oxysporum f. sp. vasinfectum. Mol Plant Microbe Interact 17:654–667

    Article  PubMed  CAS  Google Scholar 

  • Hill MK, Lyon KJ, Lyon BR (1999) Identification of disease response genes expressed in Gossypium hirsutum upon infection with the wilt pathogen Verticillium dahliae. Plant Mol Biol 40:289–296

    Article  PubMed  CAS  Google Scholar 

  • Hussey RS (1990) Staining nematodes in plant tissue. In Zuckerman et al (ed) Plant Nematology Laboratory Manual. The University of Massachusetts, Agricultural Experiment Station, Amherst, pp 190–193

  • Jalloul A, Montillet JL, Assigbete K, Agnel JP, Delannoy E, Triantaphylides C, Daniel JF, Marmey P, Geiger JP, Nicole M (2002) Lipid peroxidation in cotton: Xanthomonas interactions and the role of lipoxygenases during the hypersensitive reaction. Plant J 32:1–12

    Article  PubMed  CAS  Google Scholar 

  • Jammes F, Lecomte P, de Almeida-Engler J, Bitton F, Martin-Magniette M-L, Renou JP, Abad P, Favery B (2005) Genome-wide expression profiling of the host response to root-knot nematode infection in Arabidopsis. Plant J 44:447–458

    Article  PubMed  CAS  Google Scholar 

  • Jenkins JN, Creech RG, Tang B, Lawrence GW, McCarty JC (1995) Cotton resistance to root-knot nematode: II. Post-penetration development. Crop Sci 35:369–373

    Article  Google Scholar 

  • Lee J-H, Kim D-M, Lee JH, Kim J, Bang JW, Kim WT, Pai H-S (2005) Functional characterization of NtCEF1, an AP2/EREBP-type transcriptional activator highly expressed in tobacco callus. Planta 222:211–224

    Article  PubMed  CAS  Google Scholar 

  • Mace ME (1978) Contributions of tyloses and terpenoid aldehyde phytoalexins to Verticillium wilt resistance in cotton. Physiol Plant Pathol 12:1–11

    Article  CAS  Google Scholar 

  • Martinez C, Montillet JL, Bresson E, Agnel JP, Daniel JF, Geiger JP, Nicole M (1998) Apoplastic peroxidase generates superoxide anions in cells of cotton cotyledons undergoing the hypersensitive reaction to Xanthomonas campestris pv. malvacearum race 18. Mol Plant Microbe Interact 11:1038–1047

    Article  CAS  Google Scholar 

  • McFadden HG, Chapple R, de Feyter R, Dennis E (2001) Expression of pathogenesis-related genes in cotton stems in response to infection by Verticillium dahliae. Physiol Mol Plant Pathol 58:119–131

    Article  CAS  Google Scholar 

  • McPherson MG, Jenkins JN, Watson CE, McCarty JC (2004) Inheritance of root-knot nematode resistance in M-315 RNR and M78-RNR cotton. J Cot Sci 8:154–161

    Google Scholar 

  • Milligan SB, Bodeau J, Yaghoobi J, Kaloshian I, Zabel P, Williamson VM (1998) The root knot nematode resistance gene Mi from tomato is a member of the leucine zipper, nucleotide binding, leucine-rich repeat family of plant genes. Plant Cell 10:1307–1043

    Article  PubMed  CAS  Google Scholar 

  • Nakai K, Horton P (1999) PSORT: a program for detecting sorting signals in proteins and predicting their subcellular localization. Trends Biochem Sci 24:34–36

    Article  PubMed  CAS  Google Scholar 

  • Patil MA, Pierce ML, Phillips AL, Venters BJ, Essenberg M (2005) Identification of genes up-regulated in bacterial-blight-resistant upland cotton in response to inoculation with Xanthomonas campestris pv. malvacearum. Physiol Mol Plant Pathol 67:319–335

    Article  CAS  Google Scholar 

  • Pierce ML, Cover EC, Richardson PE, Scholes VE, Essenberg M (1996) Adequacy of cellular phytoalexin concentrations in hypersensitively responding cotton leaves. Physiol Mol Plant Pathol 48:305–324

    Article  CAS  Google Scholar 

  • Ritter D, Allen RD, Trolinder N, Hughes DW, Galau GA (1993) Cotton cotyledon cDNA encoding a peroxidase. Plant Physiol 102:1351

    Article  PubMed  CAS  Google Scholar 

  • Robinson AF, Cook CG, Percival AE (1999) Resistance to Rotylenchulus reniformis and Meloidogyne incognita Race 3 in the major cotton cultivars planted since 1950. Crop Sci 39:850–858

    Article  Google Scholar 

  • Schaff JE, Nielsen DM, Smith CP, Scholl EH, Mck Bird D (2007) Comprehensive transcriptome profiling in tomato reveals a role for glycosyltransferase in Mi-mediated nematode resistance. Plant Physiol 144:1079–1092

    Article  PubMed  CAS  Google Scholar 

  • Shen X, Van Becelaere G, Kumar P, Davis RF, May OL, Chee P (2006) QTL mapping for resistance to root-knot nematodes in the M-120 RNR Upland cotton line (Gossypium hirsutum L.) of the Auburn 623 RNR source. Theor Appl Genet 113:1539–1549

    Article  PubMed  CAS  Google Scholar 

  • Shepherd RL (1974) Transgressive segregation for root-knot nematode resistance in cotton. Crop Sci 99:251–255

    Google Scholar 

  • Tan X-P, Liang W-Q, Liu C-J, Luo P, Heinstein P, Chen X-Y (2000) Expression pattern of (+)-δ-cadinene synthase genes and biosynthesis of sesquiterpene aldehydes in plants of Gossypium arboreum L. Planta 210:644–651

    Article  PubMed  CAS  Google Scholar 

  • Townsend BJ, Poole A, Blake CJ, Llewellyn DJ (2005) Antisense suppression of a (+)-δ-cadinene synthase gene in cotton prevents the induction of this defense response gene during bacterial blight infection but not its constitutive expression. Plant Physiol 138:516–528

    Article  PubMed  CAS  Google Scholar 

  • van Loon LC, Rep M, Pieterse CMJ (2006) Significance of inducible defense-related proteins in infected plants. Annu Rev Phytopathol 44:135–162

    Article  PubMed  CAS  Google Scholar 

  • Veech JA (1978) An apparent relationship between methoxy-substituted terpenoid aldehydes and the resistance of cotton to Meloidogyne incognita. Nematologica 24:81–87

    Article  CAS  Google Scholar 

  • Veech JA (1979) Histochemical localization and nematoxicity of terpenoid aldehydes in cotton. J Nematol 11:240–246

    CAS  PubMed  Google Scholar 

  • Veech JA, McClure MA (1977) Terpenoid aldehydes in cotton roots susceptible and resistant to the root-knot nematode. J Nematology 9:225–229

    CAS  Google Scholar 

  • Wan C-Y, Wilkins TA (1994) A modified hot borate method significantly enhances the yield of high quality RNA from cotton (Gossypium hirsutum L.). Anal Biochem 223:7–12

    Article  PubMed  CAS  Google Scholar 

  • Wang C, Roberts PA (2006b) Development of AFLP and derived CAPS markers for root-knot nematode resistance in cotton. Euphytica 152:185–196

    Article  CAS  Google Scholar 

  • Wang C, Ulloa M, Roberts PA (2006a) Identification and mapping of microsatellite markers linked to a root-knot nematode resistance gene (rkn1) in Acala NemX cotton (Gossypium hirsutum L.). Theor Appl Genet 112:770–777

    Article  PubMed  CAS  Google Scholar 

  • Williamson VM, Hussey RS (1996) Nematode pathogenesis and resistance in plants. Plant Cell 8:1735–1745

    Article  PubMed  CAS  Google Scholar 

  • Wubben MJE, Su H, Rodermel SR, Baum TJ (2001) Susceptibility to the sugar beet cyst nematode is modulated by ethylene signal transduction in Arabidopsis thaliana. Mol Plant Microbe Interact 14:1206–1212

    Article  PubMed  CAS  Google Scholar 

  • Yi SY, Kim J-H, Joung Y-H, Lee S, Kim W-T, Yu SH, Choi D (2004) The pepper transcription factor CaPF1 confers pathogen and freezing tolerance in Arabidopsis. Plant Physiol 136:2862–2874

    Article  PubMed  CAS  Google Scholar 

  • Ynturi P, Jenkins JN, McCarty JC, Gutierrez OA, Saha S (2006) Association of root-knot nematode resistance genes with simple sequence repeat markers on two chromosomes in cotton. Crop Sci 46:2670–2674

    Article  CAS  Google Scholar 

  • Zhang X-D, Callahan FE, Jenkins JN, Ma D-P, Karaca M, Saha S, Creech RG (2002) A novel root-specific gene, MIC-3, with increased expression in nematode-resistant cotton (Gossypium hirsutum L.) after root-knot nematode infection. Biochim Biophys Acta 1576:214–218

    PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge Dr. Margaret Pierce (Oklahoma State University) for her gift of total RNAs from bacterial blight-infected cotton leaves and her critical review of this manuscript. The authors would also like to thank Dr. Brian Scheffler of the MidSouth Area Genomics Facility (USDA-ARS) for sequencing services.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Martin J. Wubben.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wubben, M.J., Callahan, F.E., Hayes, R.W. et al. Molecular characterization and temporal expression analyses indicate that the MIC (Meloidogyne Induced Cotton) gene family represents a novel group of root-specific defense-related genes in upland cotton (Gossypium hirsutum L.). Planta 228, 111–123 (2008). https://doi.org/10.1007/s00425-008-0723-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-008-0723-3

Keywords

Navigation