Skip to main content
Log in

Acetylsalicylic acid induces programmed cell death in Arabidopsis cell cultures

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Acetylsalicylic acid (ASA), a derivative from the plant hormone salicylic acid (SA), is a commonly used drug that has a dual role in animal organisms as an anti-inflammatory and anticancer agent. It acts as an inhibitor of cyclooxygenases (COXs), which catalyze prostaglandins production. It is known that ASA serves as an apoptotic agent on cancer cells through the inhibition of the COX-2 enzyme. Here, we provide evidences that ASA also behaves as an agent inducing programmed cell death (PCD) in cell cultures of the model plant Arabidopsis thaliana, in a similar way than the well-established PCD-inducing agent H2O2, although the induction of PCD by ASA requires much lower inducer concentrations. Moreover, ASA is herein shown to be a more efficient PCD-inducing agent than salicylic acid. ASA treatment of Arabidopsis cells induces typical PCD-linked morphological and biochemical changes, namely cell shrinkage, nuclear DNA degradation, loss of mitochondrial membrane potential, cytochrome c release from mitochondria and induction of caspase-like activity. However, the ASA effect can be partially reverted by jasmonic acid. Taking together, these results reveal the existence of common features in ASA-induced animal apoptosis and plant PCD, and also suggest that there are similarities between the pathways of synthesis and function of prostanoid-like lipid mediators in animal and plant organisms.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

Ac-DEVD-AMC:

N-acetyl-Asp-Glu-Val-Asp-AMC (7-amino-4-methylcoumarin)

Ac-DEVD-CHO:

N-acetyl-Asp-Glu-Val-Asp-CHO (aldehyde)

AOS:

Allene oxide synthase

ASA:

Acetylsalicylic acid

COX:

Cyclooxygenase

DAPI:

4′,6-Diamidino-2-phenylindole

JA:

Jasmonic acid

MDH:

Malate dehydrogenase

PCD:

Programmed cell death

SA:

Salicylic acid

TUNEL:

Terminal deoxynucleotidyl transferase-mediated dUTP nick end labelling

References

  • Balk J, Leaver CJ, McCabe PF (1999) Translocation of cytochrome c from the mitochondria to the cytosol occurs during heat-induced programmed cell death in cucumber plants. FEBS Lett 463:151–154

    Article  PubMed  CAS  Google Scholar 

  • Bethke PC, Lonsdale JE, Fath A, Jones RL (1999) Hormonally regulated programmed cell death in barley aleurone cells. Plant Cell 11:1033–1045

    Article  PubMed  CAS  Google Scholar 

  • Brodersen P, Malinovsky FG, Hématy K, Newman MA, Mundy J (2005) The role of salicylic acid in the induction of cell death in Arabidopsis acd11. Plant Physiol 138:1037–1045

    Article  PubMed  CAS  Google Scholar 

  • Clarke A, Desikan R, Hurst RD, Hancock JT, Neill SJ (2000) NO way back: nitric oxide and programmed cell death in Arabidopsis thaliana suspension cultures. Plant J 24:667–677

    Article  PubMed  CAS  Google Scholar 

  • Danon A, Delorme V, Mailhac N, Gallois P (2000) Plant programmed cell death: a common way to die. Plant Physiol Biochem 38:647–655

    Article  CAS  Google Scholar 

  • Danon A, Rotari VI, Gordon A, Mailhac N, Gallois P (2004) Ultraviolet-C overexposure induces programmed cell death in Arabidopsis, which is mediated by caspase-like activities and which can be suppressed by caspase inhibitors, p53 and defender against apoptotic death. J Biol Chem 279:779–787

    Article  PubMed  CAS  Google Scholar 

  • de Pinto MC, Paradiso A, Leonetti P, De Gara L (2006) Hydrogen peroxide, nitric oxide and cytosolic ascorbate peroxidase at the crossroad between defence and cell death. Plant J 48:784–795

    Article  PubMed  Google Scholar 

  • Desagher S, Martinou J-C (2000) Mitochondria as the central point of apoptosis. Trends Cell Biol 10:369–377

    Article  PubMed  CAS  Google Scholar 

  • Desikan R, Reynolds A, Hancock JT, Neill SJ (1998) Harpin and hydrogen peroxide both initiate programmed cell death but have differential effects on defence gene expression in Arabidopsis suspension cultures. Biochem J 330:115–120

    PubMed  CAS  Google Scholar 

  • Gómez I, Merchán F, Fernández E, Quesada A (2002) NADP-malate dehydrogenase from Chlamydomonas: prediction of new structural determinants for redox regulation by homology modelling. Plant Mol Biol 48:211–221

    Article  PubMed  Google Scholar 

  • Harms K, Ramirez I, Peña-Cortés H (1998) Inhibition of wound-induced accumulation of allene oxide synthase transcripts in flax leaves by aspirin and salicylic acid. Plant Physiol 118:1057–1065

    Article  PubMed  CAS  Google Scholar 

  • Heath MC (2000) Hypersensitive response-related death. Plant Mol Biol 44:321–334

    Article  PubMed  CAS  Google Scholar 

  • Kaufmann SH, Hengartner MO (2001) Programmed cell death: alive and well in the new millennium. Trends Plant Sci 11:526–534

    CAS  Google Scholar 

  • Krause M, Durner J (2004) Harpin inactivates mitochondria in Arabidopsis suspension cells. Mol Plant Microbe Interact 17:131–139

    Article  PubMed  CAS  Google Scholar 

  • Lam E (2004) Controlled cell death, plant survival and development. Nat Rev Mol Cell Biol 5:305–315

    Article  PubMed  CAS  Google Scholar 

  • Lam E, Pontier D, del Pozo O (1999) Die and let live –programmed cell death in plants. Curr Opin Plant Biol 2:502–507

    Article  PubMed  CAS  Google Scholar 

  • Lam E, Kato N, Lawton M (2001) Programmed cell death, mitochondria and the plant hypersensitive response. Nature 411:848–853

    Article  PubMed  CAS  Google Scholar 

  • Lamb C, Dixon RA (1997) The oxidative burst in plant disease resistance. Annu Rev Plant Physiol Plant Mol Biol 48:251–275

    Article  PubMed  CAS  Google Scholar 

  • Loll PJ, Picot D, Garavito RM (1995) The structural basis of aspirin activity inferred from the crystal structure of inactivated prostaglandin H2 synthase. Nat Struct Mol Biol 2:637–643

    Article  CAS  Google Scholar 

  • Lowry OH, Rosbrough NJ, Farr AL, Randall RJ (1951) Protein measurement with the folin phenol reagent. J Biol Chem 193:265–275

    PubMed  CAS  Google Scholar 

  • MacKinney G (1941) Absorption of light by chlorophyll solutions. J Biol Chem 140:315–322

    CAS  Google Scholar 

  • Maidment JM, Moore D, Murphy GP, Murphy G, Clark IM (1999) Matrix metalloproteinase homologues from Arabidopsis thaliana. Expression and activity. J Biol Chem 274:34706–34710

    Article  PubMed  CAS  Google Scholar 

  • Mazel A, Levine E (2001) Induction of cell death in Arabidopsis by superoxide in combination with salycilic acid or with protein synthesis inhibitors. Free Radic Biol Med 30:98–106

    Article  PubMed  CAS  Google Scholar 

  • Méric J-B, Rottey S, Olaussen K, Soria JC, Khayat D, Rixe O, Spano J-P (2006) Cyclooxygenase-2 as a target for anticancer drug development. Crit Rev Oncol Hematol 59:51–64

    Article  PubMed  Google Scholar 

  • Mittler R (2002) Oxidative stress, antioxidants and stress tolerance. Trends Plant Sci 7:405–410

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bio assay with tobacco tissue culture. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Murray MG, Thompson W (1980) Rapid isolation of high molecular weight plant DNA. Nucleic Acids Res 8:4321–4325

    Article  PubMed  CAS  Google Scholar 

  • Pan Z, Camara B, Gardner HW, Backhaus RA (1998) Aspirin inhibition and acetylation of the plant cytochrome P450, allene oxide synthase, resembles that of animal prostaglandin endoperoxide H synthase. J Biol Chem 273:18139–18145

    Article  PubMed  CAS  Google Scholar 

  • Pierpoint WS (2002) Can aspirin help identify leaf proteins active in defence responses? Ann Appl Biol 140:233–239

    Article  CAS  Google Scholar 

  • Rao MV, Davis KR (1999) Ozone-induced cell death occurs via two distinct mechanisms in Arabidopsis: the role of salicylic acid. Plant J 17:603–614

    Article  PubMed  CAS  Google Scholar 

  • Rodríguez-Roldán V, García-Heredia JM, Navarro JA, Hervás M, De la Cerda B, Molina-Heredia FP, De la Rosa MA (2006) A comparative kinetic analysis of the reactivity of plant, horse and human respiratory cytochrome c towards cytochrome c oxidase. Biochem Biophys Res Commun 346:1108–1113

    Article  PubMed  Google Scholar 

  • Sanmartín M, Jaroszewski L, Raikhel NV, Rojo E (2005) Caspases. Regulating death since the origin of life. Plant Physiol 137:841–847

    Article  PubMed  Google Scholar 

  • Shi Y (2002) Mechanisms of caspase activation and inhibition during apoptosis. Mol Cell 9:459–470

    Article  PubMed  CAS  Google Scholar 

  • Strasser A, O’Connor L, Dixit VM (2000) Apoptosis signaling. Annu Rev Biochem 69:217–245

    Article  PubMed  CAS  Google Scholar 

  • Sun YL, Zhao Y, Hong X, Zhai ZH (1999) Cytochrome c release and caspase activation during menadione-induced apoptosis in plants. FEBS Lett 462:317–321

    Article  PubMed  CAS  Google Scholar 

  • Swiatek S, Lenjou M, Bockstaele DV, Inzé D, Onckelen HV (2002) Differential effect of jasmonic acid and abscisic acid on cell cycle progression in Tobacco BY-2 cells. Plant Physiol 128:201–211

    Article  PubMed  CAS  Google Scholar 

  • Ueda J, Kato J (1982) Inhibition of cytokinin-induced plant growth by jasmonic acid and its methyl ester. Physiol Plant 54:249–252

    Article  CAS  Google Scholar 

  • Winge P, Brembu T, Kristensen R, Bone AM (2000) Genetic structure and evolution of RAC-GTPases in Arabidopsis thaliana. Genetics 156:1959–1971

    PubMed  CAS  Google Scholar 

  • Woltering EJ, van der Bent A, Hoeberichts FA (2002) Do plant caspases exist? Plant Physiol 130:1764–1769

    Article  PubMed  CAS  Google Scholar 

  • Yao N, Eisfelder BJ, Marvin J, Greenberg JY (2004) The mitochondrion –an organelle commonly involved in programmed cell death in Arabidopsis thaliana. Plant J 40:596–610

    Article  PubMed  CAS  Google Scholar 

  • Yu X-H, Perdue RTD, Heimer YM, Jones AM (2002) Mitochondrial involvement in tracheary element programmed cell death. Cell Death Differ 9:189–198

    Article  PubMed  CAS  Google Scholar 

  • Zhang S-H, Lawton MA, Hunter T, Lamb CJ (1994) Atpkl, a novel ribosomal protein kinase gene from Arabidopsis. I. Isolation, characterization, and expression. J Biol Chem 269:17586–17592

    PubMed  CAS  Google Scholar 

  • Zhao Y, Jiang ZF, Sun YL, Zhai ZH (1999) Apoptosis of mouse liver nuclei induced in the cytosol of carrot cells. FEBS Lett 448:197–200

    Article  PubMed  CAS  Google Scholar 

  • Zuppini A, Bugno V, Baldan B (2006) Monitoring programmed cell death triggered by mild heat shock in soybean-cultured cells. Funct Plant Biol 33:617–627

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work has been supported by grants from the Spanish Ministry of Education and Science (BMC2003-00458 and BFU2006-01361) and the Andalusian Government (PAIDI, CVI-0198). The authors wish to thank Pilar Alcántara for her technical assistance, Jorge Gil for his assistance on MDH assays, and Dr. Berta de la Cerda for her help in handling the Arabidopsis cell cultures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José A. Navarro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

García-Heredia, J.M., Hervás, M., De la Rosa, M.A. et al. Acetylsalicylic acid induces programmed cell death in Arabidopsis cell cultures. Planta 228, 89–97 (2008). https://doi.org/10.1007/s00425-008-0721-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-008-0721-5

Keywords

Navigation