Skip to main content
Log in

Temperature-dependent changes of cell shape during heterophyllous leaf formation in Ludwigia arcuata (Onagraceae)

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Although elongation of epidermal cells in submerged leaves is thought to be a common feature of heterophyllous aquatic plants, such elongation has not been observed in Ludwigia arcuata Walt. (Onagraceae). In this study we found that reduced culture temperature induced the elongation of epidermal cells of submerged leaves in L. arcuata. Since such submerged leaves also showed a reduction in the number of epidermal cells aligned across the leaf transverse axis, these data indicate that heterophyllous leaf formation in L. arcuata is partially temperature sensitive, i.e., the elongation of epidermal cells was temperature sensitive while the reduction in the number of epidermal cells did not show such temperature sensitivity. To clarify the mechanisms that cause such temperature sensitivity, we examined the effects of ethylene, which induced the formation of submerged-type leaves on aerial shoots at the relatively high culture-temperature of 28°C. At 23°C, ethylene induced both cell elongation and reduction in the number of epidermal cells across the leaf transverse axis, while cell elongation was not observed at 28°C. Moreover, both submergence and ethylene treatment induced a change in the arrangement of cortical microtubules (MTs) in epidermal cells of developing leaves at 23°C. Such changes in the arrangement of MTs was not induced at 28°C. Factors involved in the temperature-sensitive response to ethylene would be critical for temperature-sensitive heterophyllous leaf formation in L. arcuata.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

MTs:

Microtubules

References

  • Akashi T, Izumi K, Nagano E, Enomoto M, Mizuno K, Shibaoka H (1988) Effects of propyzamide on tobacco cell microtubules in vivo and in vitro. Plant Cell Physiol 29:1053–1062

    CAS  Google Scholar 

  • Anderson LWJ (1978) Abscisic acid induces formation of floating leaves in the heterophyllous aquatic angiosperm Potamogeton nodosus. Science 201:1135–1138

    Article  PubMed  CAS  Google Scholar 

  • Bruni NC, Young JP, Dengler NG (1996) Leaf developmental plasticity of Ranunculus flabellaris in response to terrestrial and submerged environments. Can J Bot 74:823–837

    Article  Google Scholar 

  • Cleary AL, Smith LG (1998) The tangled1 gene is required for spatial control of cytoskeletal arrays associated with cell division during maize leaf development. Plant Cell 10:1875–1888

    Article  PubMed  CAS  Google Scholar 

  • Deschamp PA, Cooke TJ (1983) Leaf dimorphism in aquatic angiosperms: significance of turgor pressure and cell expansion. Science 219:505–507

    Article  PubMed  Google Scholar 

  • Giddings TH, Staehelin LA (1988) Spatial relationship between microtubules and plasma-membrane rosettes during the deposition of primary wall microfibrils in Closterium sp. Planta 173:22–30

    Article  Google Scholar 

  • Goliber TE, Feldman LJ (1990) Developmental analysis of leaf plasticity in the heterophyllous aquatic plant Hippuris vulgaris. Am J Bot 77:399–412

    Article  Google Scholar 

  • Johnson MP (1967) Temperature dependent leaf morphogenesis in Ranunculus flabellaris. Nature 214:1354–1355

    Article  Google Scholar 

  • Kane ME, Albert LS (1982) Environmental and growth regulator effects on heterophylly and growth of Proserpinaca intermedia. Aquat Bot 13:73–85

    Article  CAS  Google Scholar 

  • Kuwabara A, Nagata T (2002) Views on developmental plasticity of plants through heterophylly. Recent Res Dev Plant Physiol 3:45–59

    CAS  Google Scholar 

  • Kuwabara A, Nagata T (2006) Cellular basis of developmental plasticity observed in heterophyllous leaf formation of Ludwigia arcuata (Onagraceae). Planta 224:761–770

    Article  PubMed  CAS  Google Scholar 

  • Kuwabara A, Tsukaya H, Nagata T (2001) Identification of factors that cause heterophylly in Ludwigia arcuata Walt. (Onagraceae). Plant Biol 3:98–105

    Article  Google Scholar 

  • Kuwabara A, Ikegami K, Koshiba T, Nagata T (2003) Effects of ethylene and abscisic acid upon heterophylly in Ludwigia arcuata Walt. (Onagraceae). Planta 217:880–887

    Article  PubMed  CAS  Google Scholar 

  • Lin BL, Wang HJ, Wang JS, Zaharia LI, Abrams SR (2005) Abscisic acid regulation of heterophylly in Marsilea quadrifolia L.: effects of R-(−) and S-(+) isomers. J Exp Bot 56:2935–2948

    Article  PubMed  CAS  Google Scholar 

  • McCully ME, Dale HM (1961) Heterophylly in Hippuris, a problem in identification. Can J Bot 39:1099–1116

    CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassay with tobacco cultures. Physiol Plant 15:473–497

    Article  CAS  Google Scholar 

  • Raskin I, Kende H (1984) Role of gibberellin in the growth response of submerged deepwater rice. Plant Physiol 76:947–950

    Article  PubMed  CAS  Google Scholar 

  • Wallenstein A, Albert LS (1963) Plant morphology: its control in Proserpinaca by photoperiod, temperature, and gibberellic acid. Science 140:998–1000

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We thank Professor Andrew Fleming (University of Sheffield, UK) for his critical reading of this manuscript and helpful comments. Thanks are also due to Dr. Arata Yoneda (The University of Tokyo, Japan) for his technical support. This study was partly supported by the Wada Kunkokai Foundation, Japan.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Asuka Kuwabara.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sato, M., Tsutsumi, M., Ohtsubo, A. et al. Temperature-dependent changes of cell shape during heterophyllous leaf formation in Ludwigia arcuata (Onagraceae). Planta 228, 27–36 (2008). https://doi.org/10.1007/s00425-008-0715-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-008-0715-3

Keywords

Navigation