Skip to main content

Advertisement

Log in

Hydrogen production by Chlamydomonas reinhardtii: an elaborate interplay of electron sources and sinks

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

The unicellular green alga Chlamydomonas reinhardtii possesses a [FeFe]-hydrogenase HydA1 (EC 1.12.7.2), which is coupled to the photosynthetic electron transport chain. Large amounts of H2 are produced in a light-dependent reaction for several days when C. reinhardtii cells are deprived of sulfur. Under these conditions, the cells drastically change their physiology from aerobic photosynthetic growth to an anaerobic resting state. The understanding of the underlying physiological processes is not only important for getting further insights into the adaptability of photosynthesis, but will help to optimize the biotechnological application of algae as H2 producers. Two of the still most disputed questions regarding H2 generation by C. reinhardtii concern the electron source for H2 evolution and the competition of the hydrogenase with alternative electron sinks. We analyzed the H2 metabolism of S-depleted C. reinhardtii cultures utilizing a special mass spectrometer setup and investigated the influence of photosystem II (PSII)- or ribulosebisphosphate-carboxylase/oxygenase (Rubisco)-deficiency. We show that electrons for H2-production are provided both by PSII activity and by a non-photochemical plastoquinone reduction pathway, which is dependent on previous PSII activity. In a Rubisco-deficient strain, which produces H2 also in the presence of sulfur, H2 generation seems to be the only significant electron sink for PSII activity and rescues this strain at least partially from a light-sensitive phenotype. The latter indicates that the down-regulation of assimilatory pathways in S-deprived C. reinhardtii cells is one of the important prerequisites for a sustained H2 evolution.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

DCMU:

3-(3,4-dichlorophenyl)-1,1-dimethylurea

FNR:

Ferredoxin-NADP+-reductase

MIMS:

Membrane inlet mass spectrometer system

PQ:

Plastoquinone

PSI:

Photosystem I

PSII:

Photosystem II

S:

Sulfur

Rubisco:

Ribulosebisphosphate-carboxylase/oxygenase

References

  • Allahverdiyeva Y, Mamedov F, Maenpaa P, Vass I, Aro EM (2005) Modulation of photosynthetic electron transport in the absence of terminal electron acceptors: characterization of the rbcL deletion mutant of tobacco. Biochim Biophys Acta 1709:69–83

    Article  PubMed  CAS  Google Scholar 

  • Antal TK, Krendeleva TE, Laurinavichene TV, Makarova VV, Ghirardi ML, Rubin AB, Tsygankov AA, Seibert M (2003) The dependence of algal H2-production on photosystem II and O2 consumption activities in sulfur-deprived Chlamydomonas reinhardtii cells. Biochim Biophys Acta 1607:153–160

    Article  PubMed  CAS  Google Scholar 

  • Antal TK, Krendeleva TE, Rubin AB (2004) The photochemical activity of photosystem II in sulfur-deprived Chlamydomonas reinhardtii cells depends on the redox state of the quinone pool during the transition to anaerobiosis. Biofizika 49:499–505

    PubMed  CAS  Google Scholar 

  • Arnon D (1949) Copper enzymes in isolated chloroplasts and polyphenol oxidase in Beta vulgaris. Plant Physiol 24:1–5

    Article  PubMed  CAS  Google Scholar 

  • Bamberger ES, King D, Erbes DL, Gibbs M (1982) H2 and CO2 evolution by anaerobically adapted Chlamydomonas reinhardtii F-60. Plant Physiol 69:1268–1273

    PubMed  CAS  Google Scholar 

  • Bennoun P (1982) Evidence for a respiratory chain in the chloroplast. Proc Natl Acad Sci USA 79:4352–4356

    Article  PubMed  CAS  Google Scholar 

  • Bishop NI, Gaffron H (1963) Of the interrelation of the mechanisms for oxygen and hydrogen evolution in adapted algae. In: Kok B, Jagendorf AT (eds) Photosynthetic mechanisms in green plants. Natl Acad Sci Natl Res Council, Washington, pp 441–451

    Google Scholar 

  • Burrows PA, Sazanow LA, Svab Z, Maliga P, Nixon PJ (1998) Identification of a functional respiratory complex in chloroplasts through analysis of tobacco mutants containing disrupted plastid ndh genes. EMBO J 17:868–876

    Article  PubMed  CAS  Google Scholar 

  • Chen HC, Newton AJ, Melis A (2005) Role of SulP, a nuclear-encoded chloroplast sulfate permease, in sulfate transport and H2 evolution in Chlamydomonas reinhardtii. Photosynth Res 84:289–296

    Article  PubMed  CAS  Google Scholar 

  • Cinco RM, MacInnis JM, Greenbaum E (1993) The role of carbon dioxide in light-activated hydrogen production by Chlamydomonas reinhardtii. Photosynth Res 38:27–33

    Article  CAS  Google Scholar 

  • Cournac L, Redding K, Ravenel J, Rumeau D, Josse EM, Kuntz M, Peltier G (2000) Electron flow between photosystem II and oxygen in chloroplast of photosystem I deficient algae is mediated by a quinole oxidase involved in chlororespiration. J Biol Chem 275:17256–17262

    Article  PubMed  CAS  Google Scholar 

  • Cournac L, Latouche G, Cerovic Z, Redding K, Ravenel J, Peltier G (2002) In vivo interactions between photosynthesis, mitorespiration and chlororespiration in Chlamydomonas reinhardtii. Plant Physiol 129:1921–1928

    Article  PubMed  CAS  Google Scholar 

  • Florin L, Tsokoglou A, Happe T (2001) A novel type of iron hydrogenase in the green alga Scenedesmus obliquus is linked to the photosynthetic electron transport chain. J Biol Chem 276:6125–6132

    Article  PubMed  CAS  Google Scholar 

  • Fouchard S, Hemschemeier A, Caruana A, Pruvost J, Legrand J, Happe T, Peltier G, Cournac L (2005) Autotrophic and mixotrophic hydrogen photoproduction in sulfur-deprived Chlamydomonas cells. Appl Environ Microbiol 71:6199–6205

    Article  PubMed  CAS  Google Scholar 

  • Gaffron H, Rubin J (1942) Fermentative and photochemical production of hydrogen in algae. J Genet Physiol 26:219–240

    Article  CAS  Google Scholar 

  • Gfeller RP, Gibbs M (1984) Fermentative metabolism of Chlamydomonas reinhardtii. I. Analysis of fermentative products from starch in dark and light. Plant Physiol 75:212–218

    PubMed  CAS  Google Scholar 

  • Gfeller RP, Gibbs M (1985) Fermentative metabolism of Chlamydomonas reinhardtii. II. Role of plastoquinone. Plant Physiol 77:509–511

    PubMed  CAS  Google Scholar 

  • Ghirardi ML, Togasaki RK, Seibert M (1997) Oxygen sensitivity of algal H2-production. Appl Biochem Biotech 63:141–151

    Article  Google Scholar 

  • Godde D, Trebst A (1980) NADH as electron donor for photosynthetic membranes of Chlamydomonas reinhardtii. Arch Microbiol 127:245–252

    Article  CAS  Google Scholar 

  • Greenbaum E, Lee JW (1998) Photosynthetic hydrogen and oxygen production by green algae. Biohydrogen 31:235–240

    Google Scholar 

  • Hajirezaei MR, Peisker M, Tschiersch H, Palatnik JF, Valle EM, Carrillo N, Sonnewald U (2002) Small changes in the activity of chloroplastic NADP(+)-dependent ferredoxin oxidoreductase lead to impaired plant growth and restrict photosynthetic activity of transgenic tobacco plants. Plant J 29:281–293

    Article  PubMed  CAS  Google Scholar 

  • Happe T, Naber JD (1993) Isolation, characterization and N-terminal amino acid sequence of hydrogenase from the green alga Chlamydomonas reinhardtii. Eur J Biochem 214:475–481

    Article  PubMed  CAS  Google Scholar 

  • Happe T, Kaminski A (2002) Differential regulation of the Fe-hydrogenase during anaerobic adaptation in the green alga Chlamydomonas reinhardtii. Eur J Biochem 269:1022–1032

    Article  PubMed  CAS  Google Scholar 

  • Happe T, Mosler B, Naber JD (1994) Induction, localization and metal content of hydrogenase in Chlamydomonas reinhardtii. Eur J Biochem 222:769–775

    Article  PubMed  CAS  Google Scholar 

  • Harris EH (1989) The Chlamydomonas sourcebook. Academic, San Diego

    Google Scholar 

  • Hemschemeier A, Happe T (2005) The exceptional photofermentative hydrogen metabolism of the green alga Chlamydomonas reinhardtii. Biochem Soc Trans 33:39–41

    Article  PubMed  CAS  Google Scholar 

  • Horváth EM, Peter SO, Joët T, Rumeau D, Cournac L, Horváth GV, Kavanagh TA, Schäfer C, Peltier G, Medgyesy P (2000) Targeted inactivation of the plastid ndhB gene in tobacco results in an enhanced sensitivity of photosynthesis to moderate stomatal closure. Plant Physiol 123:1337–1350

    Article  PubMed  Google Scholar 

  • Kosourov S, Seibert M, Ghirardi ML (2003) Effects of extracellular pH on the metabolic pathways in sulfur-deprived, H2-producing Chlamydomonas reinhardtii cultures. Plant Cell Physiol 44:146–155

    Article  PubMed  CAS  Google Scholar 

  • Kruse O, Rupprecht J, Bader KP, Thomas-Hall S, Schenk PM, Finazzi G, Hankamer B (2005) Improved photobiological H2 production in engineered green algal cells. J Biol Chem 280:34170–34177

    Article  PubMed  CAS  Google Scholar 

  • Laemmli UK, Favre M (1973) Maturation of the head of bacteriophage T4. J Mol Biol 80:575–599

    Article  PubMed  CAS  Google Scholar 

  • Melis A, Happe T (2001) Hydrogen production. Green algae as a source of energy. Plant Physiol 127:740–748

    Article  PubMed  CAS  Google Scholar 

  • Melis A, Happe T (2004) Trails of green alga H2-production research—from Hans Gaffron to new frontiers. Photosyn Res 80:401–409

    Article  PubMed  CAS  Google Scholar 

  • Melis A, Zhang L, Forestier M, Ghirardi ML, Seibert M (2000) Sustained photobiological hydrogen gas production upon reversible inactivation of oxygen evolution in the green alga Chlamydomonas reinhardtii. Plant Physiol 122:127–135

    Article  PubMed  CAS  Google Scholar 

  • Melis A, Seibert M, Happe T (2004) Genomics of green algal hydrogen research. Photosyn Res 82:277–288

    Article  PubMed  CAS  Google Scholar 

  • Mus F, Cournac L, Cardettini V, Caruana A, Peltier G (2005) Inhibitor studies on non-photochemical plastoquinone reduction and H2 photoproduction in Chlamydomonas reinhardtii. Biochim Biophys Acta 1708:322–332

    Article  PubMed  CAS  Google Scholar 

  • Palatnik JF, Tognetti VB, Poli HO, Rodriguez RE, Blanco N, Gattuso M, Hajirezaei MR, Sonnewald U, Valle EM, Carrillo N (2003) Transgenic tobacco plants expressing antisense ferredoxin-NADP(H) reductase transcripts display increased susceptibility to photo-oxidative damage. Plant J 35:332–341

    Article  PubMed  CAS  Google Scholar 

  • Peltier G, Cournac L (2002) Chlororespiration. Annu Rev Plant Biol 53:523–550

    Article  PubMed  CAS  Google Scholar 

  • Posewitz MC, Smolinski SL, Kanakagiri S, Melis A, Seibert M, Ghirardi ML (2004) Hydrogen photoproduction is attenuated by disruption of an isoamylase gene in Chlamydomonas reinhardtii. Plant Cell 16:2151–2163

    Article  PubMed  CAS  Google Scholar 

  • Redding K, Cournac L, Vassiliev IR, Golbeck JH, Peltier G, Rochaix JD (1999) Photosystem I is indispensable for photoautotrophic growth, CO2 fixation, and H2 photoproduction in Chlamydomonas reinhardtii. J Biol Chem 274:10466–10473

    Article  PubMed  CAS  Google Scholar 

  • Stirnberg M, Happe T (2004) Identification of a cis-acting element controlling anaerobic expression of the hydA-gene from Chlamydomonas reinhardtii. In: Miyake J, Igarashi Y, Roegner M (eds) Biohydrogen III. Elsevier, Oxford pp 117–127

    Google Scholar 

  • Stuart TS, Gaffron H (1972) The mechanism of hydrogen photoproduction by several algae. II. The contribution of photosystem II. Planta (Berlin) 106:101–112

    CAS  Google Scholar 

  • Takahashi S, Murata N (2005) Interruption of the Calvin cycle inhibits the repair of photosystem II from photodamage. Biochim Biophys Acta 1708:352–361

    Article  PubMed  CAS  Google Scholar 

  • White AL, Melis A (2006) Biochemistry of hydrogen metabolism in Chlamydomonas reinhardtii wild type and a Rubisco-less mutant. Intl J Hydrogen Energy 31:455–464

    Article  CAS  Google Scholar 

  • Wykoff DD, Davies JP, Melis A, Grossman AR (1998) The regulation of photosynthetic electron transport during nutrient deprivation in Chlamydomonas reinhardtii. Plant Physiol 117:129–139

    Article  PubMed  CAS  Google Scholar 

  • Xue X, Gauthier DA, Turpin DH, Weger HG (1996) Interactions between photosynthesis and respiration in the green alga Chlamydomonas reinhardtii (characterization of light-enhanced dark respiration). Plant Physiol 112:1005–1014

    PubMed  CAS  Google Scholar 

  • Zhang L, Happe T, Melis A (2002) Biochemical and morphological characterization of sulfur-deprived and H2-producing Chlamydomonas reinhardtii (green alga). Planta 214:552–561

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

This work was supported by DAAD (PPP with France, PROCOPE) and by the European Commission (6th FP, NEST STRP SOLAR-H contract 516510). A. Hemschemeier and T. Happe were further supported by the Deutsche Forschungsgemeinschaft (SFB 480). G. Peltier, L. Cournac and S. Fouchard were also supported by the Agence Nationale de la Recherche (projet PHOTOBIOH2).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Anja Hemschemeier.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hemschemeier, A., Fouchard, S., Cournac, L. et al. Hydrogen production by Chlamydomonas reinhardtii: an elaborate interplay of electron sources and sinks. Planta 227, 397–407 (2008). https://doi.org/10.1007/s00425-007-0626-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-007-0626-8

Keywords

Navigation