Skip to main content
Log in

Both caffeoyl Coenzyme A 3-O-methyltransferase 1 and caffeic acid O-methyltransferase 1 are involved in redundant functions for lignin, flavonoids and sinapoyl malate biosynthesis in Arabidopsis

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Two methylation steps are necessary for the biosynthesis of monolignols, the lignin precursors. Caffeic acid O-methyltransferase (COMT) O-methylates at the C5 position of the phenolic ring. COMT is responsible for the biosynthesis of sinapyl alcohol, the precursor of syringyl lignin units. The O-methylation at the C3 position of the phenolic ring involves the Caffeoyl CoA 3-O-methyltransferase (CCoAOMT). The CCoAOMT 1 gene (At4g34050) is believed to encode the enzyme responsible for the first O-methylation in Arabidopsis thaliana. A CCoAOMT1 promoter-GUS fusion and immunolocalization experiments revealed that this gene is strongly and exclusively expressed in the vascular tissues of stems and roots. An Arabidopsis T-DNA null mutant named ccomt 1 was identified and characterised. The mutant stems are slightly smaller than wild-type stems in short-day growth conditions and has collapsed xylem elements. The lignin content of the stem is low and the S/G ratio is high mainly due to fewer G units. These results suggest that this O-methyltransferase is involved in G-unit biosynthesis but does not act alone to perform this step in monolignol biosynthesis. To determine which O-methyltransferase assists CCoAOMT 1, a comt 1 ccomt1 double mutant was generated and studied. The development of comt 1 ccomt1 is arrested at the plantlet stage in our growth conditions. Lignins of these plantlets are mainly composed of p-hydroxyphenyl units. Moreover, the double mutant does not synthesize sinapoyl malate, a soluble phenolic. These results suggest that CCoAOMT 1 and COMT 1 act together to methylate the C3 position of the phenolic ring of monolignols in Arabidopsis. In addition, they are both involved in the formation of sinapoyl malate and isorhamnetin.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

Abbreviations

COMT:

Caffeic acid O-methyltransferase

comt 1:

Caffeic acid O-methyltransferase 1 knockout mutant

CCoAOMT:

Caffeoyl coenzyme A O-methyltransferase

ccomt 1:

Caffeyol CoA O-methyltransferase 1 knockout mutant

GUS:

Beta-glucuronidase

WT:

Wild-type

References

  • Abdulrazzak N, Pollet B, Ehlting J, Larsen K, Asnagli C, Ronseau S, Proux C, Erhardt M, Seltzer V, Renou J-P, Ullman P, Pauly M, Lapierre C, Werck-Reichhart D (2006) A coumaroyl-ester-3-hydroxylase insertion mutants reveals the existence of nonredundant meta-hydroxylation pathways and essential roles for phenolic precursors in cell expansion and plant growth. Plant Physiol 140:30–48

    Article  PubMed  CAS  Google Scholar 

  • Arabidopsis Genome Initiative (2000) Analysis of the genome sequence of the flowering plant Arabidopsis thaliana. Nature 408:796–815

    Article  Google Scholar 

  • Baluska F, Parker JS, Barlow PW (1992) Specific patterns of cortical and endoplasmic microtubules associated with cell growth rearrangements of F-actin arrays in growing cells of intact maize root apex tissues: a major developmental switch occurs in the postmitotic transition region. Eur J Cell Biol 72:113–121

    Google Scholar 

  • Bechtold N, Pelletier G (1998) In planta Agrobacterium-mediated transformation of adult Arabidopsis thaliana plants by vacuum infiltration. Methods Mol Biol 82:259–266

    PubMed  CAS  Google Scholar 

  • Binns AN, Chen RH, Wood HN, Lynn DG (1987) Cell division promoting activity of naturally occurring dehydrodiconiferyl glucosides: do cell wall components control cell division. Proc Natl Acad Sci USA 84:980–984

    Article  PubMed  CAS  Google Scholar 

  • Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Physiol Plant Mol Biol 54:519–546

    CAS  Google Scholar 

  • Bradford M (1976) A rapid and sensitive method for the quantification of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 248:248–254

    Article  Google Scholar 

  • Brown DM, Zeef LAH, Ellis J, Goodacre R, Turner SR (2005) Identification of novel genes in Arabidopsis involved in secondary cell wall formation using expression profiling and reverse genetics. Plant Cell 17:2281–2295

    Article  PubMed  CAS  Google Scholar 

  • Bugos RC, Chiang VLC, Campell WH (1991) cDNA cloning, sequence analysis and seasonal expression of lignin-bispecific caffeic acid/5-hydroxyferulic acid O-methyltransferase of aspen. Plant Mol Biol 17:1203–1215

    Article  PubMed  CAS  Google Scholar 

  • Burbulis IE, Iacobucci M, Shirley BW (1996) A null mutation in the first enzyme of flavonoid biosynthesis does not affect male fertility in Arabidopsis. Plant Cell 8:1013–1025

    Article  PubMed  CAS  Google Scholar 

  • Chen F, Parvathi K, Blount JW, Dixon R (2001) Chemical synthesis of caffeoyl and 5-OH coniferyl aldehydes and alcohols and determination of lignin O-methyltransferase activities in dicot and monocot species. Phytochemistry 58:1035–1042

    Article  PubMed  CAS  Google Scholar 

  • Chen F, Srinivasa Reddy MS, Temple S, Jackson L, Shadle G, Dixon RA (2006) Multi-site genetic modulation of monolignol biosynthesis suggests new routes for formation of syringyl lignin and wall bound ferulic acid in alfalfa (Medicago sativa L.). Plant J 48:113–124

    Article  PubMed  CAS  Google Scholar 

  • Dence C (1992) Lignin determination. In: Dence C, Lin S (eds) Methods in lignin biochemistry. Springer, Heidelberg, pp 33–61

    Google Scholar 

  • Dixon RA, Chen F, Guo D, Parvathi K (2001) The biosynthesis of monolignols: “a metabolic grid” or independant pathways to guaiacyl and syringyl units. Phytochemistry 57:1069–1084

    Article  PubMed  CAS  Google Scholar 

  • Ehlting J, Mattheus N, Aeschliman DS, Hamberger B, Cullis IF, Zhuang J, Kaneda M, Mansfield SD Samuels L, Ritland K, Ellis BE, Bohlmann J, Douglas C (2005) Global transcript profiling of primary stems from Arabidopsis thaliana identified candidate genes for missing links in lignin biosynthesis and transcriptional regulators of fiber differentiation. Plant J 42:618–640

    Article  PubMed  CAS  Google Scholar 

  • Estelle M, Somerville C (1987) Auxin-resistant mutants of Arabidopsis thaliana with an altered morphology. Mol Gen Genet 206:200–206

    Article  CAS  Google Scholar 

  • Faix O (1992) Fourier transformed infrared spectrometry. In: Sin SY, Dence CW (eds) Methods in lignin biochemistry. Springer, Heidelberg, pp 83–109

    Google Scholar 

  • Franke R, Hemm MR, Denault JW, Ruegger MO, Chapple C (2002) Changes in secondary metabolism and deposition of an unusual lignin in the ref8 mutant of Arabidopsis. Plant J 30:47–59

    Article  PubMed  CAS  Google Scholar 

  • Fukushima RS, Hatfield RD (2001) Extraction and isolation of lignin for utilization as a standard to determine lignin concentration using the acetyl bromide spectrophotometric method. J Agric Food Chem 49:3133–3139

    Article  PubMed  CAS  Google Scholar 

  • Goujon T, Sibout R, Eudes A, MacKay J, Jouanin L (2003a) Genes involved in the biosynthesis of lignin precursors in Arabidopsis thaliana. Plant Physiol Biochem 41:677–687

    Article  CAS  Google Scholar 

  • Goujon T, Sibout R, Pollet B, Maba B, Nussaume L, Bechtold N, Lu F, Ralph J, Mila I, Lapierre C, Jouanin L (2003b) A new Arabidopsis thaliana mutant deficient in the expression of O-methyltransferase impacts lignins and sinapoyl esters. Plant Mol Biol 51:973–989

    Article  PubMed  CAS  Google Scholar 

  • Goujon T, Ferret V, Mila I, Pollet B, Ruel K, Burlat V, Joseleau JP, Barrière Y, Lapierre C, Jouanin L (2003c) Down-regulation of the AtCCR1 gene in Arabidopsis thaliana: effects on phenotype, lignins and cell wall degradability. Planta 217:218–228

    PubMed  CAS  Google Scholar 

  • Guo D, Chen F, Inoue K, Blount JW, Dixon RA (2001) Downregulation of caffeic acid 3-O-methyltransferase and caffeoyl CoA 3-O-methyltransferase in transgenic alfalfa: impacts on lignin structure and implications for the biosynthesis of G and S-lignin. Plant Cell 13:73–88

    Article  PubMed  CAS  Google Scholar 

  • Inoue K, Sewalt WJH, Balance GM, Ni W, Sturzer C, Dixon RA (1998) Developmental expression and substrate specificities of alfalfa caffeic acid 3-O-methyltransferase and caffeoyl coenzyme A 3-O-methyltransferase in relation to lignification. Plant Physiol 117:761–770

    Article  PubMed  CAS  Google Scholar 

  • Jefferson R, Kavanagh T, Bevan M (1987) GUS fusions: beta-glucuronidase as a sensitive and versatile gene fusion marker in higher plants. EMBO J 6:3901–3907

    PubMed  CAS  Google Scholar 

  • Jones L, Ennos AR, Turner SR (2001) Cloning and characterization of irregular xylem4 (irx4): a severely lignin-deficient mutant of Arabidopsis. Plant J 26:205–216

    Article  PubMed  CAS  Google Scholar 

  • Ko J-H, Han K-H (2004) Arabidopsis whole-transcriptome profiling defines the features of coordinated regulations that occurs during secondary growth. Plant Mol Biol 55:433–453

    Article  PubMed  CAS  Google Scholar 

  • Koncz C, Schell J (1986) The promoter of TL-DNA gene 5 controls the tissue-specific expression of chimeric genes carried by a novel type of Agrobacterium binary vector. Mol Gen Genet 204:383–396

    Article  CAS  Google Scholar 

  • Lapierre C, Tollier M-T, Monties B (1988) Mise en évidence d’un nouveau type d’unité constitutive dans les lignines d’un mutant de maïs bm3. C R Acad Sci Paris Série III 307:723–728

    CAS  Google Scholar 

  • Lapierre C, Pollet B, Petit-Conil M, Toval G, Romero J, Pilate G, Leplé JC, Boerjan W, Ferret V, de Nadai V, Jouanin L (1999) Structural alterations of lignins in transgenic poplars with depressed cinnamyl alcohol dehydrogenase or caffeic acid O-methyltransferase activity have an opposite impact on the efficiency of industrial kraft pulping. Plant Physiol 119:153–164

    Article  PubMed  CAS  Google Scholar 

  • Lapierre C, Pollet B, Rolando R (1995) New insights into the molecular architecture of hardwood lignins by chemical degradation methods. Res Chem Intermed 21:397–412

    Article  CAS  Google Scholar 

  • Li L, Osakabe Y, Chandrashelkhar PJ, Chiang VL (1999) Secondary xylem-specific expression of caffeoyl-coenzyme A 3-O-methyltransferase plays an important role in the methylation pathway associated with lignin biosynthesis in loblolly pine. Plant Mol Biol 40:555–565

    Article  PubMed  CAS  Google Scholar 

  • Martz F, Maury S, Pinçon G, Legrand M (1998) cDNA cloning, substrate specificity and expression study of tobacco caffeoyl-CoA 3-O-methyltransferase, a lignin biosynthetic enzyme. Plant Mol Biol 36:427–437

    Article  PubMed  CAS  Google Scholar 

  • Matsui N, Chen F, Yasuda S, Fukushima K (2000) Conversion of guaiacyl to syringyl moiesties on the cinnamyl alcohol pathway during the biosynthesis of lignin in angiosperms. Planta 210:831–835

    Article  PubMed  CAS  Google Scholar 

  • Maury S, Geoffroy P, Legrand M (1999) Tobacco O-methyltransferase involved in phenylpropanoid metabolism. The different caffeoyl-coenzyme A/5-hydroxyferuloyl-coenzyme A 3/5-O-methyltransferase and caffeic acid/5-hydroxyferulic acid 3/5-O-methyltransferase classes have distinct substrate specificities and expression patterns. Plant Physiol 121:215–223

    Article  PubMed  CAS  Google Scholar 

  • Meyermans H, Morreel K, Lapierre C, Pollet B, De Bruyn A, Busson R, Herdewijn P, Devreese B, Van Beeumen J, Marita JM, Ralph J, Chen C, Burggraeve B, Van Montagu M, Mesens E, Boerjan W (2000) Modifications in lignin and accumulation of phenolic glucosides in poplar xylem upon down-regulation of caffeoyl-coenzyme A O-methyltransferase, an enzyme involved in lignin biosynthesis. J Biol Chem 47:36899–36909

    Article  Google Scholar 

  • Mouille G, Robin S, Lecomte M, Pagant S, Höfte H (2003) Classification and identification of Arabidopsis cell wall mutants using Fourier-Transform InfraRed (FT-IR) microscopy. Plant J 35:393–404

    Article  PubMed  CAS  Google Scholar 

  • Muzac I, Wang J, Anzellotti D, Zhang H, Ibrahim RK (2000) Functional expression of an Arabidopsis cDNA clone encoding a flavanol 3′-O-methyltransferase and characterization of the gene product. Arch Biochem Biophys 374:385–388

    Article  CAS  Google Scholar 

  • Pakush AE, Kneusel RE, Mattern U (1989) s-Adenosyl-l-methionine: trans-caffeoyl-coenzyme A 3-O-methyltransferase from elicitor-treated parsley cell suspension cultures. Arch Biochem Biophys 271:488–494

    Article  Google Scholar 

  • Parvathi K, Chen F, Guo D, Blount JW, Dixon RA (2001) Substrate preferences of O-methyltransferases in alfalfa suggest new pathways for 3-O-methylation of monolignols. Plant J 25:193–202

    Article  PubMed  CAS  Google Scholar 

  • Pinçon G, Maury S, Hoffman L, Geoffroy P, Lapierre C, Pollet B, Legrand M (2001) Repression of O-methyltransferase genes in transgenic tobacco affects lignin biosynthesis and plant growth. Phytochemistry 57:1167–1176

    Article  PubMed  Google Scholar 

  • Raes J, Rohde A, Christensen JH, Van de Peer Y, Boerjan W (2003) Genome-wide characterization of the lignification toolbox in Arabidopsis. Plant Physiol 133:1051–1071

    Article  PubMed  CAS  Google Scholar 

  • Robin S, Lecomte M, Höfte H, Mouille G (2003) A procedure for the clustering of cell wall mutants in the model plant Arabidopsis based on Fourier transform infrared (FT-IR) spectrometry. J Appl Stat 30:669–681

    Article  Google Scholar 

  • Rosso MG, Li Y, Strizhov N, Reis B, Dekker K, Weisshaar B (2003) An Arabidopsis thaliana T-DNA mutagenized population (GABI-Kat) for flanking sequence tag-based reverse genetics. Plant Mol Biol 53:247–259

    Article  PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch E, Maniatis T (1989) Molecular cloning; a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Shirley BW, Kubasek WL, Storz G, Bruggemann E, Koornneef M, Ausubel FM, Goodman HM (1995) Analyses of Arabidopsis mutants deficient in flavonoid biosynthesis. Plant J 8:659–671

    Article  PubMed  CAS  Google Scholar 

  • Sibout R, Eudes A, Mouille G, Pollet B, Lapierre C, Jouanin L, Séguin A (2005) Routing sinapyl and coniferyl alcohol pathway though the last reduction step in Arabidopsis thaliana using a double CAD mutant. Plant Cell 17:2059–2076

    Article  PubMed  CAS  Google Scholar 

  • Turner SR, Somerville CR (1997) Collapsed xylem phenotype of Arabidopsis identifies mutants deficient in cellulose deposition in the secondary cell wall. Plant Cell 9:689–701

    Article  PubMed  CAS  Google Scholar 

  • Van Doorsselaere J, Baucher M, Chognot E, Chabbert B, Tollier MT, Petit-Conil M, Leplé JC, Pilate G, Cornu D, Monties B, Van Montagu M, Inze D, Boerjan W, Jouanin L (1995) A novel lignin in poplar trees with a reduced caffeic acid/5-hydroxyferulic acid O-methyltransferase. Plant J 8:855–864

    Google Scholar 

  • Ye Z-H, Kneusel RE, Matern U, Varner JE (1994) An alternative methylation pattern in lignin biosynthesis in zinnia. Plant Cell 6:1427–1439

    Article  PubMed  CAS  Google Scholar 

  • Ye Z-H, Zhong R, Morrison III WH, Himmelsbach DS (2001) Caffeoyl coenzyme A O-methyltransferase and lignin biosynthesis. Phytochemistry 57:1177–1185

    Article  PubMed  CAS  Google Scholar 

  • Zhong R, Morrison III WH, Negrel J, Ye Z-H (1998) Dual methylation pathway in lignin biosynthesis. Plant Cell 10:2033–2045

    Article  PubMed  CAS  Google Scholar 

  • Zhong R, Morrison III WH, Himmelsbach DS, Poole II FL, Ye Z-H (2000) Essential role of caffeoyl Coenzyme A O-methyltransferase in lignin biosynthesis in woody poplar plants. Plant Physiol 124:563–577

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

We thank Fréderic Legée and Laurent Cézard for running the Klason lignin and the thioacidolysis analyses respectively and Christina Gofron for Arabidopsis cultivation in the greenhouse. This work was supported by Genoplante grants (Af2001-009 and GABI-Génoplante 2003–13).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lise Jouanin.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Do, CT., Pollet, B., Thévenin, J. et al. Both caffeoyl Coenzyme A 3-O-methyltransferase 1 and caffeic acid O-methyltransferase 1 are involved in redundant functions for lignin, flavonoids and sinapoyl malate biosynthesis in Arabidopsis. Planta 226, 1117–1129 (2007). https://doi.org/10.1007/s00425-007-0558-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-007-0558-3

Keywords

Navigation