Skip to main content
Log in

Phosphate starvation responses are mediated by sugar signaling in Arabidopsis

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Phosphate (Pi) is one of the least available plant nutrients in soils. It is associated with dynamic changes in carbon fluxes and several crucial processes that regulate plant growth and development. Pi levels regulate the expression of large number of genes including those involved in photosynthesis and carbon metabolism. Herein we show that sugar is required for Pi starvation responses including changes in root architecture and expression of phosphate starvation induced (PSI) genes in Arabidopsis. Active photosynthesis or the supplementation of sugar in the medium was essential for the expression of PSI genes under Pi limiting conditions. Expression of these genes was not only induced by sucrose but also detected, albeit at reduced levels, with other metabolizable sugars. Non-metabolizable sugar analogs did not induce the expression of PSI genes. Although sugar input appears to be downstream of initial Pi sensing, it is absolutely required for the completion of the PSI signaling pathway. Altered expression of PSI genes in the hexokinase signaling mutant gin2 indicates that hexokinase-dependent signaling is involved in this process. The study provides evidence for requirement of sugars in PSI signaling and evokes a role for hexokinase in some components of Pi response mechanism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  • Ashihara H, Li XN, Ukaji T (1988) Effect of inorganic phosphate on the biosynthesis of purine and pyrimidine nucleotides in suspension-cultured cells of Catharanthus roseus. Ann Bot 61:225–232

    CAS  Google Scholar 

  • Campbell CD, Sage RF (2002) Interactions between atmospheric CO2 concentration and phosphorus nutrition on the formation of proteoid roots in white lupin (Lupinus albus L.). Plant Cell Environ 25:1051–1059

    Article  Google Scholar 

  • Carpita NC, Kanabus J (1987) Extraction of starch by dimethyl sulfoxide and quantitation by enzymatic assay. Anal Biochem 161:132–139

    Article  PubMed  CAS  Google Scholar 

  • Ciereszko I, Johansson H, Hurry V, Kleczkowski LA (2001) Phosphate status affects the gene expression, protein content and enzymatic activity of UDP-glucose pyrophosphorylase in wild-type and pho mutants of Arabidopsis. Planta 212:598–605

    Article  PubMed  CAS  Google Scholar 

  • Cortes S, Gromova M, Evrard A, Roby C, Heyraud A, Rolin DB, Raymond P, Brouquisse RM (2003) In plants, 3-O-Methylglucose is phosphorylated by hexokinase but not perceived as a sugar. Plant Physiol 131:824–837

    Article  PubMed  CAS  Google Scholar 

  • Coruzzi G, Bush DR (2001) Nitrogen and carbon nutrient and metabolite signaling in plants. Plant Physiol 125:61–64

    Article  PubMed  CAS  Google Scholar 

  • Dai N, Schaffer A, Petreikov M, Shahak Y, Giller Y, Ratner K, Levine A, Granot D (1999) Overexpression of Arabidopsis hexokinase in tomato plants inhibits growth, reduces photosynthesis, and induces rapid senescence. Plant Cell 11:1253–1266

    Article  PubMed  CAS  Google Scholar 

  • de Bruijn SM, Visser RGM, Vreugdenhil D (1999) Simultaneous analysis of a series of phosphorylated sugars in small tissue samples by anion exchange chromatography and pulsed amperometric detection. Phytochem Anal 10:107–112

    Article  Google Scholar 

  • Franco-Zorrilla JM, Martin AC, Leyva A, Paz-Ares J (2005) Interaction between phosphate-starvation, sugar, and cytokinin signaling in Arabidopsis and the roles of cytokinin receptors CRE1/AHK4 and AHK3. Plant Physiol 138:847–857

    Article  PubMed  CAS  Google Scholar 

  • Fredeen AL, Madhusudana Rao I, Terry N (1989) Influence of phosphorus nutrition on growth and carbon partitioning in Glycine max. Plant Physiol 89:225–230

    Article  PubMed  CAS  Google Scholar 

  • Furbank RT, Foyer CH, Walker DA (1987) Regulation of photosynthesis in isolated spinach chloroplasts during orthophosphate limitation. Biochim Biophys Acta 894:552–561

    Article  CAS  Google Scholar 

  • Gazzarrini S, Lejay L, Gojon A, Ninnemann O, Frommer WB, Wiren Nv (1999) Three functional transporters for constitutive, diurnally regulated, and starvation-induced uptake of ammonium into Arabidopsis roots. Plant Cell 11:937–947

    Article  PubMed  CAS  Google Scholar 

  • Giersch C, Robinson S (1987) Regulation of photosynthetic carbon metabolism during phosphate limitation of photosynthesis in isolated spinach chloroplasts. Photosynth Res 14:211–227

    Article  CAS  Google Scholar 

  • Gottwald JR, Krysan PJ, Young JC, Evert RF, Sussman MR (2000) Genetic evidence for the in planta role of phloem-specific plasma membrane sucrose transporters. Proc Natl Acad Sci USA 97:13979–13984

    Article  PubMed  CAS  Google Scholar 

  • Jang JC, Leon P, Zhou L, Sheen J (1997) Hexokinase as a sugar sensor in higher plants. Plant Cell 9:5–19

    Article  PubMed  CAS  Google Scholar 

  • Johnson JF, Vance CP, Allan DL (1996) Phosphorus deficiency in Lupinus albus. Altered lateral root development and enhanced expression of phosphoenolpyruvate carboxylase. Plant Physiol 112:31–41

    Article  PubMed  CAS  Google Scholar 

  • Karthikeyan AS, Varadarajan DK, Mukatira UT, D’Urzo MP, Damsz B, Raghothama KG (2002) Regulated expression of Arabidopsis phosphate transporters. Plant Physiol 130:221–233

    Article  PubMed  CAS  Google Scholar 

  • Koch KE (1996) Carbohydrate-modulated gene expression in plants. Annu Rev Pant Physiol Plant Mol Biol 47:509–540

    Article  CAS  Google Scholar 

  • Koch K (2004) Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development. Curr Opin Plant Biol 7:235–246

    Article  PubMed  CAS  Google Scholar 

  • Krapp A, Stitt M (1994) Influence of high carbohydrate content on the activity of plastidic and cytosolic isoenzyme pairs in photosynthetic tissues. Plant Cell Environ 17:861–866

    Article  CAS  Google Scholar 

  • Krapp A, Stitt M (1995) An evaluation of direct and indirect mechanisms for the “sink-regulation” of photosynthesis in spinach: changes in gas exchange, carbohydrates, metabolites, enzyme activities and steady-state transcript levels after cold-gridling source leaves. Planta 195:313–323

    Article  CAS  Google Scholar 

  • Lauer MJ, Blevins DG, Sierzputowska-Gracz H (1989) 31P-nuclear magnetic resonance determination of phosphate compartmentation in leaves of reproductive soybeans (Glycine max L.) as affected by phosphate nutrition. Plant Physiol 89:1331–1336

    PubMed  CAS  Google Scholar 

  • Leegood RC, Walker DA, Foyer CH (1985) Regulation of the Benson–Calvin cycle. In: Barber J, Baker NR (eds) Photosynthetic mechanisms and the environment. Elsevier, Amsterdam, pp 189–258

    Google Scholar 

  • Lejay L, Tillard P, Lepetit M, Olive FD, Filleur S, Daniel-Vedele F, Gojon A (1999) Molecular and functional regulation of two NO3-uptake systems by N- and C-status of Arabidopsis thaliana. Plant J 18:509–519

    Article  PubMed  CAS  Google Scholar 

  • Lejay L, Gansel X, Cerezo M, Tillard P, Muller C, Krapp A, von Wiren N, Daniel-Vedele F, Gojon A (2003) Regulation of root ion transporters by photosynthesis: functional importance and relation with hexokinase. Plant Cell 15:2218–2232

    Article  PubMed  CAS  Google Scholar 

  • Liu J, Samac DA, Bucciarelli B, Allan DL, Vance CP (2005) Signaling of phosphorus deficiency-induced gene expression in white lupin requires sugar and phloem transport. Plant J 41:257–268

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Bucio J, Hernandez-Abreu E, Sanchez-Calderon L, Nieto-Jacobo MF, Simpson J, Herrera-Estrella L (2002) Phosphate availability alters architecture and causes changes in hormone sensitivity in the Arabidopsis root system. Plant Physiol 129:244–256

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Bucio J, Hernandez-Abreu E, Sanchez-Calderon L, Perez-Torres A, Rampey RA, Bartel B, Herrera-Estrella L (2005) An auxin transport independent pathway is involved in phosphate stress-induced root architectural alterations in Arabidopsis. Identification of BIG as a mediator of auxin in pericycle cell activation. Plant Physiol 137:681–691

    Article  PubMed  CAS  Google Scholar 

  • Mollier A, Pellerin S (1999) Maize root system growth and development as influenced by phosphorus deficiency. J Exp Bot 50:487–497

    Article  CAS  Google Scholar 

  • Moore B, Zhou L, Rolland F, Hall Q, Cheng WH, Liu YX, Hwang I, Jones T, Sheen J (2003) Role of the Arabidopsis glucose sensor HXK1 in nutrient, light, and hormonal signaling. Science 300:332–336

    Article  PubMed  CAS  Google Scholar 

  • Muchhal US, Pardo JM, Raghothama KG (1996) Phosphate transporters from the higher plant Arabidopsis thaliana. Proc Natl Acad Sci USA 93:10519–10523

    Article  PubMed  CAS  Google Scholar 

  • Muller R, Nilsson L, Krintel C, Hamborg Nielsen T (2004) Gene expression during recovery from phosphate starvation in roots and shoots of Arabidopsis thaliana. Physiol Plant 122:233–243

    Article  CAS  Google Scholar 

  • Muller R, Nilsson L, Nielsen LK, Hamborg Nielsen T (2005) Interaction between phosphate starvation signalling and hexokinase-independent sugar sensing in Arabidopsis leaves. Physiol Plant 124:81–90

    Article  CAS  Google Scholar 

  • Nacry P, Canivenc G, Muller B, Azmi A, Van Onckelen H, Rossignol M, Doumas P (2005) A Role for Auxin redistribution in the responses of the root system architecture to phosphate starvation in Arabidopsis 10.1104/pp.105.060061. Plant Physiol 138:2061–2074

    Article  PubMed  CAS  Google Scholar 

  • Natr L (1992) Mineral nutrients—a ubiquitous stress factor for photosynthesis. Photosynthetica 27:271–294

    CAS  Google Scholar 

  • Nielsen TH, Knapp A, Roper-Schwarz U, Stitt M (1998) The sugar-mediated regulation of genes encoding the small subunit of Rubisco and the regulatory subunit of ADP glucose pyrophosphorylase is modified by phosphate and nitrogen. Plant Cell Environ 21:443–454

    Article  CAS  Google Scholar 

  • Price J, Laxmi A, St. Martin SK, Jang J-C (2004) Global transcription profiling reveals multiple sugar signal transduction mechanisms in Arabidopsis. Plant Cell 16:2128–2150

    Article  PubMed  CAS  Google Scholar 

  • Raghothama KG (1999) Phosphate acquisition. Annu Rev Pant Physiol Plant Mol Biol 50:665–693

    Article  CAS  Google Scholar 

  • Raghothama K, Karthikeyan A (2005) Phosphate acquisition. Plant Soil 274:37–49

    Article  CAS  Google Scholar 

  • Rao IM, Terry N (1995) Leaf phosphate status, photosynthesis, and carbon partitioning in sugar beet. IV. Changes with time following increased supply of phosphate to low-phosphate plants. Plant Physiol 107:1313–1321

    PubMed  CAS  Google Scholar 

  • Rolland F, Moore B, Sheen J (2002) Sugar sensing and signaling in plants. Plant Cell 14:S185–S205

    PubMed  CAS  Google Scholar 

  • Rychter AM, Randall DD (1994) The effect of phosphate deficiency on carbohydrate metabolism in bean roots. Physiol Plant 91:383–388

    Article  CAS  Google Scholar 

  • Sadka A, DeWald DB, May GD, Park WD, Mullet JE (1994) Phosphate modulates transcription of soybean VspB and other sugar-inducible genes. Plant Cell 6:737–749

    Article  PubMed  CAS  Google Scholar 

  • Sanchez-Calderon L, Lopez-Bucio J, Chacon-Lopez A, Cruz-Ramirez A, Nieto-Jacobo F, Dubrovsky JG, Herrera-Estrella L (2005) Phosphate starvation induces a determinate developmental program in the roots of Arabidopsis thaliana 10.1093/pcp/pci011. Plant Cell Physiol 46:174–184

    Article  PubMed  CAS  Google Scholar 

  • Shin H, Shin H-S, Chen R, Harrison MJ (2006) Loss of At4 function impacts phosphate distribution between the roots and the shoots during phosphate starvation. Plant J 45:712–726

    Article  PubMed  CAS  Google Scholar 

  • Sinha AK, Hofmann MG, Romer U, Kockenberger W, Elling L, Roitsch T (2002) Metabolizable and non-metabolizable sugars activate different signal transduction pathways in tomato. Plant Physiol 128:1480–1489

    Article  PubMed  CAS  Google Scholar 

  • Smeekens S (2000) Sugar-induced signal transduction in plants. Annu Rev Pant Physiol Plant Mol Biol 51:49–81

    Article  CAS  Google Scholar 

  • Theodorou ME, Plaxton WC (1993) Metabolic adaptations of plant respiration to nutritional phosphate deprivation. Plant Physiol 101:339–344

    PubMed  CAS  Google Scholar 

  • Veramendi J, Roessner U, Renz A, Willmitzer L, Trethewey RN (1999) Antisense repression of hexokinase 1 leads to an overaccumulation of starch in leaves of transgenic potato plants but not to significant changes in tuber carbohydrate metabolism. Plant Physiol 121:123–133

    Article  PubMed  CAS  Google Scholar 

  • Wiren Nv, Lauter FR, Ninnemann O, Gillissen B, Walch-Liu P, Engels C, Jost W, Frommer WB (2000) Differential regulation of three functional ammonium transporter genes by nitrogen in root hairs and by light in leaves of tomato. Plant J 21:167–175

    Article  Google Scholar 

  • Zakhleniuk OV, Raines CA, Lloyd JC (2001) pho3: A phosphorus-deficient mutant of Arabidopsis thaliana (L.) Heynh. Planta 212:529–534

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors thank Dr. Jyan-Chyun Jang for providing the seeds of gin2. We sincerely appreciate Michael Poling for the technical help. We thank Dr. Paul M. Hasegawa for critical review of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kashchandra G. Raghothama.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Karthikeyan, A.S., Varadarajan, D.K., Jain, A. et al. Phosphate starvation responses are mediated by sugar signaling in Arabidopsis . Planta 225, 907–918 (2007). https://doi.org/10.1007/s00425-006-0408-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-006-0408-8

Keywords

Navigation