Skip to main content
Log in

Loss or retention of chloroplast DNA in maize seedlings is affected by both light and genotype

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

We examined the chloroplast DNA (cpDNA) from plastids obtained from wild type maize (Zea mays L.) seedlings grown under different light conditions and from photosynthetic mutants grown under white light. The cpDNA was evaluated by real-time quantitative PCR, quantitative DNA fluorescence, and blot-hybridization following pulsed-field gel electrophoresis. The amount of DNA per plastid in light-grown seedlings declines greatly from stalk to leaf blade during proplastid-to-chloroplast development, and this decline is due to cpDNA degradation. In contrast, during proplastid-to-etioplast development in the dark, the cpDNA levels increase from the stalk to the blade. Our results suggest that DNA replication continues in the etioplasts of the upper regions of the stalk and in the leaves. The cpDNA level decreases rapidly, however, after dark-grown seedlings are transferred to light and the etioplasts develop into photosynthetically active chloroplasts. Light, therefore, triggers the degradation of DNA in maize chloroplasts. The cpDNA is retained in the leaf blade of seedlings grown under red, but not blue light. We suggest that light signaling pathways are involved in mediating cpDNA levels, and that red light promotes replication and inhibits degradation and blue light promotes degradation. For five of nine photosynthetic mutants, cpDNA levels in expanded leaves are higher than in wild type, indicating that nuclear genotype can affect the loss or retention of cpDNA.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

cpDNA :

Chloroplast DNA

DAPI :

4′,6-diamidino-2-phenylindole

PCR :

Polymerase chain reaction

PFGE :

Pulsed-field gel electrophoresis

PML :

Photosynthetic Mutant Library

Rfl :

Relative fluorescence intensity

References

  • Asakura Y, Hirohashi T, Kikuchi S, Belcher S, Osborne E, Yano S, Terashima I, Barkan A, Nakai M (2004) Maize mutants lacking chloroplast FtsY exhibit pleiotropic defects in the biogenesis of thylakoid membranes. Plant Cell 16:201–214

    Article  PubMed  CAS  Google Scholar 

  • Backert S, Dörfel P, Börner T (1995) Investigation of plant organellar DNAs by pulsed-field gel electrophoresis. Curr Genet 28:390–399

    Article  PubMed  CAS  Google Scholar 

  • Baena-González E, Aro E-M (2002) Biogenesis, assembly, and turnover of photosystem II units. Philos Trans R Soc Lond B 357:1451–1460

    Article  CAS  Google Scholar 

  • Baumgartner BJ, Rapp JC, Mullet JE (1989) Plastid transcription activity and DNA copy number increase early in barley chloroplast development. Plant Physiol 89:1011–1018

    Article  PubMed  CAS  Google Scholar 

  • Baumgartner BJ, Rapp JC, Mullet JE (1993) Plastid genes encoding the transcription/translation apparatus are differentially transcribed early in barley (Hordeum vulgare) chloroplast development: evidence for selective stabilization of psbA mRNA. Plant Physiol 101:781–791

    PubMed  CAS  Google Scholar 

  • Bendich AJ (2004) Circular chloroplast chromosomes: the grand illusion. Plant Cell 16:1661–1666

    Article  PubMed  CAS  Google Scholar 

  • Bendich AJ, Smith SB (1990) Moving pictures and pulsed-field gel electrophoresis show linear DNA molecules from chloroplasts and mitochondria. Curr Genet 17:421–425

    Article  CAS  Google Scholar 

  • Chen M, Chory J, Fankhauser C (2004) Light signal transduction in higher plants. Annu Rev Genet 38:87–117

    Article  PubMed  CAS  Google Scholar 

  • Deng X-W, Wing RA, Gruissem W (1989) The chloroplast genome exists in multimeric forms. Proc Natl Acad Sci USA 86:4156–4160

    Article  PubMed  CAS  Google Scholar 

  • Dubell AN, Mullet JE (1995) Continuous far-red light activates plastid DNA synthesis in pea leaves but not full cell enlargement or an increase in plastid number per cell. Plant Physiol 109:95–103

    CAS  Google Scholar 

  • Heinhorst S, Cannon GC (1993) DNA replication in chloroplasts. J Cell Sci 104:1–9

    CAS  Google Scholar 

  • Heinhorst S, Chi-Ham CL, Adamson SW, Cannon GC (2004) The somatic inheritance of plant organelles. In: Daniell H, Chase C (eds) Molecular biology and biotechnology of plant organelles: chloroplasts and mitochondria. Springer, Dordrecht, The Netherlands, pp 37–92

    Google Scholar 

  • Jarvis P, Robinson C (2004) Mechanisms of protein import and routing in chloroplasts. Curr Biol 14:R1064–R1077

    Article  PubMed  CAS  Google Scholar 

  • Kim M, Christopher DA, Mullet JE (1993) Direct evidence for selective modulation of psbA, rpoA, rbcL, and 16S RNA stability during barley chloroplast development. Plant Mol Biol 22:447–463

    Article  PubMed  CAS  Google Scholar 

  • Kuroiwa T (1991) The replication, differentiation, and inheritance of plastids with emphasis on the concept of organelle nuclei. Int Rev Cytol 128:1–62

    Article  CAS  Google Scholar 

  • Lamppa GK, Elliot LV, Bendich AJ (1980) Changes in chloroplast number during pea leaf development: an analysis of a protoplast population. Planta 148:437–443

    CAS  Google Scholar 

  • Li W, Ruf S, Bock R (2006) Constancy of organellar genome copy numbers during leaf development and senescence in higher plants. Mol Genet Genomics 275:185–192

    Article  PubMed  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Lopez-Juez E, Pyke KA (2005) Plastids unleashed: their development and their integration in plant development. Int J Dev Biol 49:557–577

    Article  PubMed  CAS  Google Scholar 

  • Lurin C, Andres C, Aubourg S, Bellaoui M, Bitton F, Bruyere C, Caboche M, Debast C, Gualberto J, Hoffmann B, Lecharny A, Le Ret M, Martin-Magniette ML, Mireau H, Peeters N, Renou JP, Szurek B, Taconnat L, Small I (2004) Genome-wide analysis of Arabidopsis pentatricopeptide repeat proteins reveals their essential role in organelle biogenesis. Plant Cell 16:2089–2103

    Article  PubMed  CAS  Google Scholar 

  • Meierhoff K, Felder S, Nakamura T, Bechtold N, Schuster G (2003) HCF152, an Arabidopsis RNA binding pentatricopeptide repeat protein involved in the processing of chloroplast psbB-psbT-psbH-petB-petD RNAs. Plant Cell 15:1480–1495

    Google Scholar 

  • Mullet JE (1993) Dynamic regulation of chloroplast transcription. Plant Physiol 103:309–313

    Article  PubMed  CAS  Google Scholar 

  • Nakamura T, Schuster G, Sugiura M, Sugita M (2004) Chloroplast RNA-binding and pentatricopeptide repeat proteins. Biochem Soc Trans 32:571–574

    Article  PubMed  CAS  Google Scholar 

  • Nassoury N, Morse D (2005) Protein targeting to the chloroplasts of photosynthetic eukaryotes: getting there is half the fun. Biochim Biophys Acta 1743:5–19

    Article  PubMed  CAS  Google Scholar 

  • Oldenburg DJ, Bendich AJ (2004a) Changes in the structure of DNA molecules and the amount of DNA per plastid during chloroplast development in maize. J Mol Biol 344:1311–1330

    Article  CAS  Google Scholar 

  • Oldenburg DJ, Bendich AJ (2004b) Most chloroplast DNA of maize seedlings in linear molecules with defined ends and branched forms. J Mol Biol 335:953–970

    Article  CAS  Google Scholar 

  • Pfaffl MW (2001) A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:E45

    Article  PubMed  CAS  Google Scholar 

  • Pyke KA (1999) Plastid division and development. Plant Cell 11:549–556

    Article  PubMed  CAS  Google Scholar 

  • Rowan BA, Oldenburg DJ, Bendich AJ (2004) The demise of chloroplast DNA in Arabidopsis. Curr Genet 46:176–181

    Article  PubMed  CAS  Google Scholar 

  • Roy LM, Barkan A (1998) A SecY homologue is required for the elaboration of the chloroplast thylakoid membrane and for normal chloroplast gene expression. J Cell Biol 141:385–395

    Article  PubMed  CAS  Google Scholar 

  • Sasaki Y, Nakamura Y, Matsuno R (1986) Phytochrome-mediated accumulation of chloroplast DNA in pea leaves. FEBS Lett 196:171–174

    Article  CAS  Google Scholar 

  • Sawers RJ, Linley PJ, Farmer PR, Hanley NP, Costich DE, Terry MJ, Brutnell TP (2002) elongated mesocotyl1, a phytochrome-deficient mutant of maize. Plant Physiol 130:155–163

    Article  PubMed  CAS  Google Scholar 

  • Sawers RJ, Linley PJ, Gutierrez-Marcos JF, Delli-Bovi T, Farmer PR, Kohchi T, Terry MJ, Brutnell TP (2004) The Elm1 (ZmHy2) gene of maize encodes a phytochromobilin synthase. Plant Physiol 136:2771–2781

    Article  PubMed  CAS  Google Scholar 

  • Scott NS, Possingham JV (1980) Chloroplast DNA in expanding spinach leaves. J Exp Bot 31:1081–1092

    Google Scholar 

  • Shaver JM, Oldenburg DJ, Bendich AJ (2006) Changes in chloroplast DNA during development in tobacco, Medicago truncatula, pea, and maize. Planta 224:72–82

    Article  PubMed  CAS  Google Scholar 

  • Takano M, Inagaki N, Xie X, Yuzurihara N, Hihara F, Ishizuka T, Yano M, Nishimura M, Miyao A, Hirochika H, Shinomura T (2005) Distinct and cooperative functions of phytochromes A, B, and C in the control of deetiolation and flowering in rice. Plant Cell 17:3311–3325

    Article  PubMed  CAS  Google Scholar 

  • Taylor WC, Barkan A, Martienssen RA (1987) Use of nuclear mutants in the analysis of chloroplast development. Dev Genet 8:305–320

    Article  PubMed  CAS  Google Scholar 

  • Thompson D, Walbot V, Coe EH Jr (1983) Plastid development in iojap- and chloroplast mutator-affected maize plants. Am J Bot 70:940–950

    Article  Google Scholar 

  • Voelker R, Barkan A (1995) Nuclear genes required for post-translational steps in the biogenesis of the chloroplast cytochrome b6f complex in maize. Mol Gen Genet 249:507–514

    Article  PubMed  CAS  Google Scholar 

  • Voelker R, Mendel-Hartvig J, Barkan A (1997) Transposon-disruption of a maize nuclear gene, tha1, encoding a chloroplast SecA homologue: In vivo role of cp-SecA in thylakoid protein targeting. Genet 145:467–478

    CAS  Google Scholar 

  • Wada M, Shimazaki K, Iino M (2005) Light Sensing in Plants. In: The Botanical Society of Japan, Yamada Science Foundation and Spinger-Verlag, Tokyo

  • Walbot V, Coe EHJ (1979) Nuclear gene iojap conditions a programmed change to ribosome-less plastids in Zea mays. Proc Natl Acad Sci USA 76:2760–2764

    Article  PubMed  CAS  Google Scholar 

  • Williams PM, Barkan A (2003) A chloroplast-localized PPR protein required for plastid ribosome accumulation. Plant J 36:675–686

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgments

The project was supported in part by the National Research Initiative of the USDA Cooperative State Research, Education and Extension Service, grant number no. 2002-35301-12021 and Public Health Service, National Research Service Award, T32 GM07270, from the National Institute of General Medical Sciences. We thank Doug Ewing for assistance with growing plants and Jerry Davison for assistance with flow cytometry.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Arnold J. Bendich.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Oldenburg, D.J., Rowan, B.A., Zhao, L. et al. Loss or retention of chloroplast DNA in maize seedlings is affected by both light and genotype. Planta 225, 41–55 (2006). https://doi.org/10.1007/s00425-006-0329-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-006-0329-6

Keywords

Navigation