Skip to main content
Log in

Nuclear fragmentation and DNA degradation during programmed cell death in petals of morning glory (Ipomoea nil)

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

We studied DNA degradation and nuclear fragmentation during programmed cell death (PCD) in petals of Ipomoea nil (L.) Roth flowers. The DNA degradation, as observed on agarose gels, showed a large increase. Using DAPI, which stains DNA, and flow cytometry for DAPI fluorescence, we found that the number of DNA masses per petal at least doubled. This indicated chromatin fragmentation, either inside or outside the nucleus. Staining with the cationic lipophilic fluoroprobe DiOC6 indicated that each DNA mass had an external membrane. Fluorescence microscopy of the nuclei and DNA masses revealed an initial decrease in diameter together with chromatin condensation. The diameters of these condensed nuclei were about 70% of original. Two populations of nuclear diameter, one with an average diameter about half of the other, were observed at initial stages of nuclear fragmentation. The diameter of the DNA masses then gradually decreased further. The smallest observed DNA masses had a diameter less than 10% of that of the original nucleus. Cycloheximide treatment arrested the cytometrically determined changes in DNA fluorescence, indicating protein synthesis requirement. Ethylene inhibitors (AVG and 1-MCP) had no effect on the cytometrically determined DNA changes, suggesting that these processes are not controlled by endogenous ethylene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

AVG:

Aminoethoxyvinyl glycine

CHI:

Cycloheximide

DAPI:

4,6-Diamidino-2-phenylindole

DiOC6 :

3,3′-Dihexyloxacarbocyanine iodide

1-MCP:

1-Methylcyclopropene

PCD:

Programmed cell death

References

  • Asen S, Norris KH, Stewart RN (1971) Effect of pH and concentration of the anthocyanin–flavonol co-pigment on the color of ‘Better Times’ roses. J Am Soc Hortic Sci 96:770–773

    CAS  Google Scholar 

  • Baumgartner B, Hurter J, Matile P (1975) On the fading of an ephemeral flower. Biochem Physiol Pflanz 168:299–306

    CAS  Google Scholar 

  • Beutelmann P, Kende H (1977) Membrane lipids in senescing flower tissue of Ipomoea tricolor. Plant Physiol 59:888–893

    PubMed  CAS  Google Scholar 

  • Boe R, Gjertsen BT, Vintemyr OK, Houge G, Lanotte M, Doskeland SO (1991) The protein phosphatase inhibitor okadaic acid induces morphological changes typical of apoptosis in mammalian cells. Exp Cell Res 195:237–246

    Article  PubMed  CAS  Google Scholar 

  • Danon A, Gallois P (1998) UV-C radiation induces apoptotic-like changes in Arabidopsis thaliana. FEBS Lett 437:131–136

    Article  PubMed  CAS  Google Scholar 

  • Dini L, Coppola S, Ruzittu MT, Ghibelli L (1996) Multiple pathways for apoptotic nuclear fragmentation. Exp Cell Res 223:340–347

    Article  PubMed  CAS  Google Scholar 

  • van Doorn WG, Woltering EJ (2005) Many ways to exit? Cell death categories in plants. Trends Plant Sci 10:117–122

    PubMed  Google Scholar 

  • van Doorn WG, Balk PA, van Houwelingen AM, Hoeberichts FA, Hall RD, Vorst O, van der Schoot C, van Wordragen MF (2003) Gene expression during anthesis and senescence in Iris flowers. Plant Mol Biol 53:845–863

    Article  PubMed  Google Scholar 

  • Grbic V, Bleecker AB (1995) Ethylene regulates the timing of leaf senescence in Arabidopsis. Plant J 8:595–602

    Article  CAS  Google Scholar 

  • Hanson AD, Kende H (1975) Ethylene-enhanced ion and sucrose efflux in morning glory flower tissue. Plant Physiol 55:663–669

    Article  PubMed  CAS  Google Scholar 

  • Hockenbery D (1995) Defining apoptosis. Am J Pathol 146:15–19

    Google Scholar 

  • Kende H, Baumgartner B (1974) Regulation of aging in flowers of Ipomoea tricolor by ethylene. Planta 116:279–289

    Article  CAS  Google Scholar 

  • van der Kop DAM, Ruys G, Dees D, van der Schoot C, de Boer AD, van Doorn WG (2003) Expression of defender against apoptotic death (DAD-1) in Iris and Dianthus petals. Physiol Plant 117:256–263

    Article  Google Scholar 

  • Marubashi W, Yamada T, Niwa M (1999) Apoptosis detected in hybrids between Nicotiana glutinosa and N. repanda expressing lethality. Planta 210:168–171

    Article  PubMed  CAS  Google Scholar 

  • Matile P, Winkenbach F (1971) Function of lysosomes and lysosomal enzymes in the senescing corolla of the morning glory (Ipomoea purpurea). J Exp Bot 22:759–771

    CAS  Google Scholar 

  • Matzke MA, Matzke AJM, Neuhaus G (1988) Cell age-related differences in the interaction of a potential-sensitive fluorescent dye with nuclear envelopes of Acetabularia mediterranea. Plant Cell Environ 11:157–164

    Article  Google Scholar 

  • McGuire RG (1992) Reporting of objective color measurements. Hortic Sci 27:1254–1255

    Google Scholar 

  • Obara K, Kuriyama H, Fukuda H (2001) Direct evidence of active and rapid nuclear degradation triggered by vacuole rupture during programmed cell death in zinnia. Plant Physiol 125:615–626

    Article  PubMed  CAS  Google Scholar 

  • Schussler EE, Longstreth DJ (2000) Changes in cell structure during the formation of root aerenchyma in Sagittaria lancifolia (Alismataceae). Am J Bot 87:12–19

    Article  PubMed  Google Scholar 

  • Sun Y, Clinkenbeard KD, Ownby CL, Cudd L, Clarke CR, Highlander SK (2000) Ultrastructural characterization of apoptosis in bovine lymphocytes exposed to Pasteurella haemolytica leukotoxin. Am J Vet Res 61:51–56

    Article  PubMed  CAS  Google Scholar 

  • Tarin JJ, Cano A (1998) Distribution of 5-chloromethylfluorescein diacetate staining during meiotic maturation and fertilization in vitro of mouse oocytes. J Reprod Fertil 114:211–218

    Article  PubMed  CAS  Google Scholar 

  • Wang H, Li J, Bostock RM, Gilchrist DG (1996) Apoptosis: a functional paradigm for programmed plant cell death induced by a host-selective phytotoxin and invoked during development. Plant Cell 8:375–391

    Article  PubMed  CAS  Google Scholar 

  • Winkenbach F (1970) Zum Stoffwechsel der aufblühenden und welkenden Korolle der Prunkwinde Ipomoea purpurea. Berichte der schweizischen botanischen Gesellschaft 80:374–390

    Google Scholar 

  • Yamada T, Marubashi W (2003) Overproduced ethylene causes programmed cell death leading to temperature-sensitive lethality in hybrid seedlings from the cross Nicotiana suaveolens × N. tabacum. Planta 217:690–698

    Article  PubMed  CAS  Google Scholar 

  • Yamada T, Takatsu Y, Kasumi M, Manabe T, Hayashi M, Marubashi W, Niwa M (2001) Novel evaluation method of flower senescence in freesia (Freesia hybrida) based on apoptosis as an indicator. Plant Biotechnol 18:215–218

    CAS  Google Scholar 

  • Yamada T, Takatsu Y, Manabe T, Kasumi M, Marubashi W (2003) Suppressive effect of trehalose on apoptotic cell death leading to petal senescence in ethylene-insensitive flowers of gladiolus. Plant Sci 164:213–221

    Article  CAS  Google Scholar 

  • Yao N, Eisfelder BJ, Marvin J, Greenberg JT (2004) The mitochondrion—an organelle commonly involved in programmed cell death in Arabidopsis thaliana. Plant J 40:596–610

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tetsuya Yamada.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamada, T., Takatsu, Y., Kasumi, M. et al. Nuclear fragmentation and DNA degradation during programmed cell death in petals of morning glory (Ipomoea nil). Planta 224, 1279–1290 (2006). https://doi.org/10.1007/s00425-006-0307-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-006-0307-z

Keywords

Navigation