Skip to main content
Log in

Co-occurrence of both l-asparaginase subtypes in Arabidopsis: At3g16150 encodes a K+-dependent l-asparaginase

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

l-asparaginases (EC 3.5.1.1) are hypothesized to play an important role in nitrogen supply to sink tissues, especially in legume-developing seeds. Two plant l-asparaginase subtypes were previously identified according to their K+-dependence for catalytic activity. An l-asparaginase homologous to Lupinus K+-independent enzymes with activity towards β-aspartyl dipeptides, At5g08100, has been previously characterized as a member of the N-terminal nucleophile amidohydrolase superfamily in Arabidopsis. In this study, a K+-dependent l-asparaginase from Arabidopsis, At3g16150, is characterized. The recombinants At3g16150 and At5g08100 share a similar subunit structure and conserved autoproteolytic pentapeptide cleavage site, commencing with the catalytic Thr nucleophile, as determined by ESI-MS. The catalytic activity of At3g16150 was enhanced approximately tenfold in the presence of K+. At3g16150 was strictly specific for l-Asn, and had no activity towards β-aspartyl dipeptides. At3g16150 also had an approximately 80-fold higher catalytic efficiency with l-Asn relative to At5g08100. Among the β-aspartyl dipeptides tested, At5g08100 had a preference for β-aspartyl-His, with catalytic efficiency comparable to that with l-Asn. The phylogenetic analysis revealed that At3g16150 and At5g08100 belong to two distinct subfamilies. The transcript levels of At3g16150 and At5g08100 were highest in sink tissues, especially in flowers and siliques, early in development, as determined by quantitative RT-PCR. The overlapping spatial patterns of expression argue for a partially redundant function of the enzymes. However, the high catalytic efficiency suggests that the K+-dependent enzyme may metabolize l-Asn more efficiently under conditions of high metabolic demand for N.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

Ntn:

N-terminal nucleophile

GUS:

β-Glucoronidase

MES:

2-(N-morpholino)ethanesulfonic acid

AGI:

Arabidopsis genome initiative

ABRC:

Arabidopsis Biological Resource Center

IPTG:

Isopropyl β-D-1-thiogalactopyranoside

DAA:

Day after anthesis

FW:

Fresh weight

DEPC:

Diethyl pyrocarbonate

TAIR:

The Arabidopsis Information Resource

NCBI:

National Center for Biotechnology Information

TIGR:

The Institute for Genome Research

CBR:

Canadian Bioinformatics Resource

LSD:

Least significant difference

EST:

Expressed sequence tag

HsGA:

Human glycosylasparaginase

References

  • Altschul SF, Gish W, Miller W, Myers EW, Lipman DJ (1990) Basic local alignment search tool. J Mol Biol 215:403–410

    PubMed  CAS  Google Scholar 

  • Aswad DW, Paranandi MV, Schurter BT (2000) Isoaspartate in peptides and proteins: formation, significance, and analysis. J Pharm Biomed Anal 21:1129–1136

    Article  PubMed  CAS  Google Scholar 

  • Atkins CA, Pate JS, Sharkey PJ (1975) Asparagine metabolism key to the nitrogen nutrition of developing legume seeds. Plant Physiol 56:807–812

    PubMed  CAS  Google Scholar 

  • Borek D, Jaskolski M (2001) Sequence analysis of enzymes with asparaginase activity. Acta Biochim Pol 48:893–902

    PubMed  CAS  Google Scholar 

  • Borek D, Podkowinski J, Kisiel A, Jaskolski M (1999) Isolation and characterization of cDNA encoding l-asparaginase from Lupinus luteus (Accession No. AF112444) (PGR 99-050). Plant Physiol 119:1568

    Google Scholar 

  • Borek D, Michalska K, Brzezinski K, Kisiel A, Podkowinski J, Bonthron DT, Krowarsch D, Otlewski J, Jaskolski M (2004) Expression, purification and catalytic activity of Lupinus luteus asparagine β-amidohydrolase and its Escherichia coli homolog. Eur J Biochem 271:3215–3226

    Article  PubMed  CAS  Google Scholar 

  • Casado A, Caballero JL, Franco AR, Cardenas J, Grant MR, Munoz-Blanco J (1995) Molecular cloning of the gene encoding the L-asparaginase of Arabidopsis thaliana. Plant Physiol 108:1321–1322

    Article  PubMed  CAS  Google Scholar 

  • Chagas EP, Sodek L (2001) Purification and properties of asparaginase from the testa of immature seeds of pea (Pisum sativum L.). Braz Arch Biol Technol 44:239–245

    Article  CAS  Google Scholar 

  • Chang KS, Farnden KJF (1981) Purification and properties of asparaginase (EC 3.5.1.1) from Lupinus arboreus and Lupinus angustifolius. Arch Biochem Biophys 208:49–58

    Article  PubMed  CAS  Google Scholar 

  • Chirgwin JM, Przybyla AE, MacDonald RJ, Rutter WJ (1979) Isolation of biologically active ribonucleic acid from sources enriched in ribonuclease. Biochemistry 18:5294–5299

    Article  PubMed  CAS  Google Scholar 

  • Clarke S (2003) Aging as war between chemical and biochemical processes: protein methylation and the recognition of age-damaged proteins for repair. Ageing Res Rev 2:263–285

    Article  PubMed  CAS  Google Scholar 

  • Dickson JMJJ, Vincze E, Grant MR, Smith LA, Rodber KA, Farnden KJF, Reynolds PHS (1992) Molecular cloning of the gene encoding developing seed L-asparaginase from Lupinus angustifolius. Plant Mol Biol 20:333–336

    Article  PubMed  CAS  Google Scholar 

  • Felsenstein J (1989) PHYLIP: phylogeny inference package (version 3.2). Cladistics 5:164–166

    Google Scholar 

  • Fisher KJ, Tollersrud O, Aronson NN Jr (1990) Cloning and sequence analysis of a cDNA for human glycosylasparaginase. A single gene encodes the subunits of this lysosomal amidase. FEBS Lett 269:440–444

    Article  PubMed  CAS  Google Scholar 

  • Grant M, Bevan MW (1994) Asparaginase gene expression is regulated in a complex spatial and temporal pattern in nitrogen-sink tissues. Plant J 5:695–704

    Article  CAS  Google Scholar 

  • Hejazi M, Piotukh K, Mattow J, Deutzmann R, Volkmer-Engert R, Lockau W (2002) Isoaspartyl dipeptidase activity of plant-type asparaginases. Biochem J 364:129–136

    PubMed  CAS  Google Scholar 

  • Hernández-Sebastià C, Marsolais F, Saravitz C, Israel D, Dewey RE, Huber SC (2005) Free amino acid profiles suggest a possible role for asparagine in the control of storage-product accumulation in developing seeds of low- and high-protein soybean lines. J Exp Bot 56:1951–1963

    Article  PubMed  CAS  Google Scholar 

  • Hsieh JJ, Cheng EH, Korsmeyer SJ (2003) Taspase1: a threonine aspartase required for cleavage of MLL and proper HOX gene expression. Cell 115:293–303

    Article  PubMed  CAS  Google Scholar 

  • Ireland RJ, Joy KW (1981) Two routes for asparagine metabolism in Pisum sativum L. Planta 151:289–292

    Article  CAS  Google Scholar 

  • Ireland RJ, Joy KW (1983) Subcellular localization of asparaginase and asparagine aminotransferase in Pisum sativum leaves. Plant Physiol 72:1127–1129

    PubMed  CAS  Google Scholar 

  • Ireland RJ, Lea PJ (1999) The enzymes of glutamine, glutamate, asparagine, and aspartate metabolism. In: Singh BK (ed) Plant amino acids: biochemistry and biotechnology. Dekker, New York, pp 49–109

    Google Scholar 

  • Ishiyama K, Inoue E, Watanabe-Takahashi A, Obara M, Yamaya T, Takahashi H (2004) Kinetic properties and ammonium-dependent regulation of cytosolic isoenzymes of glutamine synthetase in Arabidopsis. J Biol Chem 279:16598–16605

    Article  PubMed  CAS  Google Scholar 

  • Kern R, Malki A, Abdallah J, Liebart JC, Dubucs C, Yu MH, Richarme G (2005) Protein isoaspartate methyltransferase is a multicopy suppressor of protein aggregation in Escherichia coli. J Bacteriol 187:1377–1383

    Article  PubMed  CAS  Google Scholar 

  • Laemlli UK (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    Article  Google Scholar 

  • Lam HM, Wong P, Chan HK, Yam KM, Chen L, Chow CM, Coruzzi GM (2003) Overexpression of the Asn1 gene enhances nitrogen status in seeds of Arabidopsis. Plant Physiol 132:926–935

    Article  PubMed  CAS  Google Scholar 

  • Lanvers C, Pinheiro JPV, Hempel G, Wuerthwein G, Boos J (2002) Analytical validation of a microplate reader-based method for the therapeutic drug monitoring of L-asparaginase in human serum. Anal Biochem 309:117–126

    Article  PubMed  CAS  Google Scholar 

  • Laughlin LT, Reed GH (1997) The monovalent cation requirement of rabbit muscle pyruvate kinase is eliminated by substitution of lysine for glutamate 177. Arch Biochem Biophys 348:262–267

    Article  PubMed  CAS  Google Scholar 

  • Lea PJ, Ireland RJ (1999) Nitrogen metabolism in higher plants. In: Singh BK (ed) Plant amino acids: biochemistry and biotechnology. Dekker, New York, pp 1–47

    Google Scholar 

  • Liepman AH, Olsen LJ (2001) Peroxisomal alanine: glyoxylate aminotransferase (Agt1) is a photorespiratory enzyme with multiple substrates in Arabidopsis thaliana. Plant J 25:487–498

    Article  PubMed  CAS  Google Scholar 

  • Liepman AH, Olsen LJ (2004) Genomic analysis of aminotransferases in Arabidopsis thaliana. Crit Rev Plant Sci 23:73–89

    Article  CAS  Google Scholar 

  • Lough TJ, Chang KS, Canne A, Monk BC, Reynolds PHS, Farnden KJF (1992a) L-Asparaginase from developing seeds of Lupinus arboreus. Phytochemistry 31:1519–1527

    Article  CAS  Google Scholar 

  • Lough TJ, Reddington BD, Grant MR, Hill DF, Reynolds PHS, Farnden KJF (1992b) The isolation and characterisation of a cDNA clone encoding L-asparaginase from developing seeds of lupin (Lupinus arboreus). Plant Mol Biol 19:391–399

    Article  CAS  Google Scholar 

  • Meinke DW (1994) Seed development in Arabidopsis thaliana. In: Meyerowitz EM, Somerville CR (ed) Arabidopsis. Cold Spring Harbor Laboratory Press, Plainview, pp 253–295

    Google Scholar 

  • Meinke DW, Sussex IM (1979) Embryo-lethal mutants of Arabidopsis thaliana. A model system for genetic analysis of plant embryo development. Dev Biol 72:50–61

    Article  PubMed  CAS  Google Scholar 

  • Michalska K, Brzezinski K, Jaskolski M (2005) Crystal structure of isoaspartyl aminopeptidase in complex with L-aspartate. J Biol Chem 280:28484–28491

    Article  PubMed  CAS  Google Scholar 

  • Möllering H (1985) L-Aspartate and L-asparagine. In: Bergmeyer J, Grassl M (eds) Metabolites 3: lipids, amino acids and related compounds, 3rd edn. VCH Verlagsgesellschaft, Weinheim, pp 350–357

    Google Scholar 

  • Mudgett MB, Clarke S (1994) Hormonal and environmental responsiveness of a developmentally regulated protein repair L-isoaspartyl methyltransferase in wheat. J Biol Chem 269:25605–25612

    PubMed  CAS  Google Scholar 

  • Mudgett MB, Clarke S (1996) A distinctly regulated protein repair L-isoaspartylmethyltransferase from Arabidopsis thaliana. Plant Mol Biol 30:723–737

    Article  PubMed  CAS  Google Scholar 

  • Mudgett MB, Lowenson JD, Clarke S (1997) Protein repair L-isoaspartyl methyltransferase in plants. Phylogenetic distribution and the accumulation of substrate proteins in aged barley seeds. Plant Physiol 115:1481–1489

    Article  PubMed  CAS  Google Scholar 

  • Murray DR, Kennedy IR (1980) Changes in activities of enzymes of nitrogen metabolism in seed coats and cotyledons during embryo development in pea seeds. Plant Physiol 66:782–786

    PubMed  CAS  Google Scholar 

  • Murray AJS, Blackwell RD, Joy KW, Lea PJ (1987) Photorespiratory N donors, aminotransferase and photosynthesis in mutant of barley deficient in serine: glyoxylate aminotransferase activity. Planta 172:106–113

    Article  CAS  Google Scholar 

  • Palmiter RD (1974) Magnesium precipitation of ribonucleoprotein complexes. Expedient techniques for the isolation of undegraded polysomes and messenger ribonucleic acid. Biochemistry 13:3606–3615

    Article  PubMed  CAS  Google Scholar 

  • Pate JS (1976) Nitrogen mobilization and cycling: case studies for carbon and nitrogen in organs of a legume. In: Wardlow IF, Passioura JB (eds) Transport and transfer processes in plants. Academic Press, New York, pp 447–462

    Google Scholar 

  • Pate JS (1989) Origin, destination and fate of phloem solutes in relation to organ and whole plant functioning. In: Baker DA, Milburn JA (eds) Transport of photoassimilates. Longman, Harlow, pp 138–166

    Google Scholar 

  • Ramírez-Silva L, Ferreira ST, Nowak T, de Gómez-Puyou MT, Gómez-Puyou A (2001) Dimethylsulfoxide promotes K+-independent activity of pyruvate kinase and the acquisition of the active catalytic conformation. Eur J Biochem 268:3267–3274

    Article  PubMed  Google Scholar 

  • Robinson NE, Robinson AB (2001) Molecular clocks. Proc Natl Acad Sci USA 98:944–949

    Article  PubMed  CAS  Google Scholar 

  • Rolletschek H, Hosein F, Miranda M, Heim U, Gotz KP, Schlereth A, Borisjuk L, Saalbach I, Wobus U, Weber H (2005) Ectopic expression of an amino acid transporter (Vfaap1) in seeds of Vicia narbonensis and pea increases storage proteins. Plant Physiol 137:1236–1249

    Article  PubMed  CAS  Google Scholar 

  • Schmid M, Davison TS, Henz SR, Pape UJ, Demar M, Vingron M, Scholkopf B, Weigel D, Lohmann JU (2005) A gene expression map of Arabidopsis thaliana development. Nat Genet 37:501–506

    Article  PubMed  CAS  Google Scholar 

  • Shimizu T, Matsuoka Y, Shirasawa T (2005) Biological significance of isoaspartate and its repair system. Biol Pharm Bull 28:1590–1596

    Article  PubMed  CAS  Google Scholar 

  • Sieciechowicz K, Ireland RJ, Joy KW (1985) Diurnal variation of asparaginase in developing pea leaves. Plant Physiol 77:506–508

    PubMed  CAS  Google Scholar 

  • Sieciechowicz K, Ireland RJ, Joy KW (1988a) Diurnal changes in asparaginase activity in pea leaves. II. Regulation of activity. J Exp Bot 39:707–721

    Article  CAS  Google Scholar 

  • Sieciechowicz K, Joy KW, Ireland RJ (1988b) Diurnal changes in asparaginase activity in pea leaves. I. The requirement for light for increased activity. J Exp Bot 39:695–706

    Article  CAS  Google Scholar 

  • Sieciechowicz K, Joy KW, Ireland RJ (1988c) The metabolism of asparagine in plants. Phytochemistry 27:663–671

    Article  CAS  Google Scholar 

  • Sodek L, Lea PJ (1993) Asparaginase from the testa of developing lupin and pea seeds. Phytochemistry 34:51–56

    Article  CAS  Google Scholar 

  • Sodek L, Lea PJ, Miflin BJ (1980) Distribution and properties of a potassium dependent asparaginase EC 3.5.1.1 isolated from developing seeds of Pisum sativum cultivar Feltham-First and other plants. Plant Physiol 65:22–26

    Article  PubMed  CAS  Google Scholar 

  • Suelter CH (1970) Enzymes activated by monovalent cations. Science 168:789–795

    Article  PubMed  CAS  Google Scholar 

  • Thapar N, Kim AK, Clarke S (2001) Distinct patterns of expression but similar biochemical properties of protein L-isoaspartyl methyltransferase in higher plants. Plant Physiol 125:1023–1035

    Article  PubMed  CAS  Google Scholar 

  • Thompson JD, Higgins DG, Gibson TJ (1994) CLUSTAL W: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680

    Article  PubMed  CAS  Google Scholar 

  • Tonin GS, Sodek L (1990) Asparaginase, allantoinase and glutamine synthetase activities in soybean cotyledons grown in vitro. Phytochemistry 29:2829–2831

    Article  CAS  Google Scholar 

  • Tyler L, Thomas SG, Hu J, Dill A, Alonso JM, Ecker JR, Sun TP (2004) Della proteins and gibberellin-regulated seed germination and floral development in Arabidopsis. Plant Physiol 135:1008–1019

    Article  PubMed  CAS  Google Scholar 

  • Walbot V, Clutter M, Sussex IM (1972) Reproductive development and embryogeny in Phaseolus. Phytomorphology 22:59–68

    Google Scholar 

  • Wehner A, Harms E, Jennings MP, Beacham IR, Derst C, Bast P, Roehm KH (1992) Site-specific mutagenesis of Escherichia coli Asparaginase II. None of the three histidine residues is required for catalysis. Eur J Biochem 208:475–480

    Article  PubMed  CAS  Google Scholar 

  • Xu Q, Belcastro MP, Villa ST, Dinkins RD, Clarke SG, Downie AB (2004) A second protein L-isoaspartyl methyltransferase gene in Arabidopsis produces two transcripts whose products are sequestered in the nucleus. Plant Physiol 136:2652–2664

    Article  PubMed  CAS  Google Scholar 

  • Yanagisawa S, Akiyama A, Kisaka H, Uchimiya H, Miwa T (2004) Metabolic engineering with Dof1 transcription factor in plants: improved nitrogen assimilation and growth under low-nitrogen conditions. Proc Natl Acad Sci USA 101:7833–7838

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank the ABRC (Ohio State University, Colombus, OH) for the At5g08100 cDNA clone, and Dr. Soon Park (Agriculture and Agri-Food Canada, Greenhouse and Processing Crops Research Centre, Harrow, Ontario) for seeds of white navy bean (P. vulgaris) cv. AC Compass. We also thank Alex Molnar for his expert graphical assistance in the preparation of figures.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédéric Marsolais.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bruneau, L., Chapman, R. & Marsolais, F. Co-occurrence of both l-asparaginase subtypes in Arabidopsis: At3g16150 encodes a K+-dependent l-asparaginase. Planta 224, 668–679 (2006). https://doi.org/10.1007/s00425-006-0245-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-006-0245-9

Keywords

Navigation