Skip to main content
Log in

The formation and patterning of leaves: recent advances

  • Review
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Leaves, the plant’s major photosynthetic organs, form through the activity of groups of pluripotent cells, termed shoot apical meristems (SAMs), located at the growing tips of plants. Leaves develop with a dorso–ventral asymmetry, with the adaxial surface adjacent to the meristem and the abaxial surface developing at a distance from it. Molecular genetic studies have shown that the correct specification of adaxial/abaxial polarity requires communication between the incipient leaf and the meristem, and that the juxtaposition of adaxial/abaxial fates is necessary for lamina outgrowth (Waites and Hudson 1995; McConnell et al. 2001). Over the last few years, a number of factors that control cell fate specification in the apex have been identified. This review will focus on recent advances on distinct but overlapping aspects of leaf development, namely, the transition from meristem to leaf fate and the specification of abaxial/adaxial polarity and its possible role in leaf growth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

Abbreviations

DL :

DROOPING LEAF

GRAM :

GRAMINIFOLIA

GRO:

GROUCHO

HD-ZIPIII:

Homeodomain-Leucine Zipper III

KNOX :

class I KNOTTED homeobox gene

Lbl1 :

Leafbladeless1

LUG :

LEUGNIG

miRNA:

microRNA

NS :

NARROW SHEATH

PHAN :

PHANTASTICA

PHB :

PHABULOSA

PROL :

PROLONGATA

PRS :

PRESSED FLOWER

Rld1 :

Rolled leaf1

SAM:

Shoot apical meristem

TUP1:

Glucose repression regulatory protein

STY :

STYLOSA

WUS :

WUSCHEL

KAN :

KANADI

YAB :

YABBY

ZYB :

Zea mays YABBY

References

  • Bao N, Lye K, Barton KM (2004) MicroRNA binding sites in Arabidopsis class III HD-ZIP mRNAs are required for methylation of the template chromosome. Dev Cell 7:653–662

    Article  CAS  PubMed  Google Scholar 

  • Emery JF, Floyd SK, Alvarez J, Eshed Y, Hawker NP, Izhaki A, Baum SF, Bowman JL (2003) Radial patterning of Arabidopsis shoots by class III HD-ZIP and KANADI genes. Curr Biol 13:1768–1774

    Article  CAS  PubMed  Google Scholar 

  • Eshed Y, Baum SF, Bowman JL (1999) Distinct mechanisms promote polarity establishment in carpels of Arabidopsis. Cell 99:199–209

    Article  CAS  PubMed  Google Scholar 

  • Eshed Y, Izhaki A, Baum SF, Floyd SK, Bowman JL (2004) Asymmetric leaf development and blade expansion in Arabidopsis are mediated by KANADI and YABBY activities. Development 131:2997–3006

    Article  CAS  PubMed  Google Scholar 

  • Fisher AL, Caudy M (1998) Groucho proteins: transcriptional corepressors for specific subsets of DNA-binding transcription factors in vertebrates and invertebrates. Genes Dev 12:1931–1940

    CAS  PubMed  Google Scholar 

  • Floyd SK, Bowman JL (2004) Gene regulation: ancient microRNA target sequences in plants. Nature 428:485–486

    Article  CAS  PubMed  Google Scholar 

  • Golz JF, Roccaro M, Kuzoff RK, Hudson A (2004) GRAMINIFOLIA promotes growth and polarity of Antirrhinum leaves. Development 131:3661–3670

    Article  CAS  PubMed  Google Scholar 

  • Juarez MT, Kui JS, Thomas J, Heller BA, Timmermans MCP (2004a) microRNA-mediated repression of rolled leaf1 specifies maize leaf polarity. Nature 428:84–88

    Article  CAS  PubMed  Google Scholar 

  • Juarez MT, Twigg RW, Timmermans MCP (2004b) Specification of adaxial cell fate during maize leaf development. Development 131:4533–4544

    Article  CAS  PubMed  Google Scholar 

  • Kaplan DR (1973) The monocotyledons: their evolution and comparative biology. VII. The problem of leaf morphology and evolution in the monocotyledons. Q Rev Biol 48:437–457

    Article  Google Scholar 

  • Kerstetter RA, Laudencia-Chingcuanco D, Smith LG, Hake S (1997) Loss-of-function mutations in the maize homeobox gene, knotted1, are defective in shoot meristem maintenance. Development 124:3045–3054

    CAS  PubMed  Google Scholar 

  • Kerstetter RA, Bollman K, Taylor RA, Bomblies K, Poethig RS (2001) KANADI regulates organ polarity in Arabidopsis. Nature 411:706–709

    Article  CAS  PubMed  Google Scholar 

  • Kidner CA, Martienssen RA (2004) Spatially restricted microRNA directs leaf polarity through ARGONAUTE1. Nature 428:81–84

    Article  CAS  PubMed  Google Scholar 

  • Long JA, Moan EI, Medford JI, Barton MK (1996) A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis. Nature 379:66–69

    Article  CAS  PubMed  Google Scholar 

  • Mallory AC, Reinhart BJ, Jones-Rhoades MW, Tang GL, Zamore PD, Barton MK, Bartel DP (2004) MicroRNA control of PHABULOSA in leaf development: importance of pairing to the microRNA 5′ region. EMBO J 23:3356–3364

    Article  CAS  PubMed  Google Scholar 

  • Matsumoto N, Okada K (2002) A homeobox gene, PRESSED FLOWER, regulates lateral axis-dependent development of Arabidopsis flowers (vol 15, pg 3355, 2001). Genes Dev 16:764–764

    CAS  Google Scholar 

  • McConnell JR, Barton MK (1998) Leaf polarity and meristem formation in Arabidopsis. Development 125:2935–2942

    CAS  PubMed  Google Scholar 

  • McConnell JR, Emery J, Eshed Y, Bao N, Bowman J, Barton MK (2001) Role of PHABULOSA and PHAVOLUTA in determining radial patterning in shoots. Nature 411:709–713

    Article  CAS  PubMed  Google Scholar 

  • Nardmann J, Ji J, Wolfgang W, Scanlon MJ (2004) The maize duplicate genes narrow sheath1 and narrow sheath2 encode a conserved homeobox gene function in a lateral domain of shoot apical meristems. Development 131:2827–2839

    Article  CAS  PubMed  Google Scholar 

  • Navarro C, Efremova N, Golz JF, Rubiera R, Kuckenberg M, Castillo R, Tietz O, Saedler H, Schwarz-Sommer Z (2004) Molecular and genetic interactions between STYLOSA and GRAMINIFOLIA in the control of Antirrhinum vegetative and reproductive development. Development 131:3649–3659

    Article  CAS  PubMed  Google Scholar 

  • Reinhart BJ, Weinstein EG, Rhoades MW, Bartel B, Bartel DP (2002) MicroRNAs in plants. Genes Dev 16:1616–1626

    Article  CAS  PubMed  Google Scholar 

  • Rhoades MW, Reinhart BJ, Lim LP, Burge CB, Bartel B, Bartel DP (2002) Prediction of plant microRNA targets. Cell 110:513–520

    Article  CAS  PubMed  Google Scholar 

  • Sawa S, Watanabe K, Goto K, Kanaya E, Morita EH, Okada K (1999) FILAMENTOUS FLOWER, a meristem and organ identity gene of Arabidopsis, encodes a protein with a zinc finger and HMG-related domains. Genes Dev 13:1079–1088

    CAS  PubMed  Google Scholar 

  • Scanlon MJ (2000) Narrow sheath1 functions from two meristematic foci during founder-cell recruitment in maize leaf development. Development 127:4573–4585

    CAS  PubMed  Google Scholar 

  • Scanlon MJ, Freeling M (1997) Clonal sectors reveal that a specific meristematic domain is not utilized in the maize mutant narrow sheath. Dev Biol 182:52–66

    Article  CAS  PubMed  Google Scholar 

  • Scanlon MJ, Schneeberger RG, Freeling M (1996) The maize mutant narrow sheath fails to establish leaf margin identity in a meristematic domain. Development 122:1683–1691

    CAS  PubMed  Google Scholar 

  • Siegfried KR, Eshed Y, Baum SF, Otsuga D, Drews GN, Bowman JL (1999) Members of the YABBY gene family specify abaxial cell fate in Arabidopsis. Development 126:4117–4128

    CAS  PubMed  Google Scholar 

  • Smith LG, Greene B, Veit B, Hake S (1992) A dominant mutation in the maize homeobox gene, Knotted-1, causes its ectopic expression in leaf-cells with altered fates. Development 116:21–30

    CAS  PubMed  Google Scholar 

  • Tang GL, Reinhart BJ, Bartel DP, Zamore PD (2003) A biochemical framework for RNA silencing in plants. Genes Dev 17:49–63

    Article  CAS  PubMed  Google Scholar 

  • Troll W (1955) Concerning the morphological significance of the so-called vorlauferspitze of monocot leaves. Beitraege Biologie Pflanzen 31:525–558

    Google Scholar 

  • Vollbrecht E, Veit B, Sinha N, Hake S (1991) The developmental gene Knotted-1 is a member of a maize homeobox gene family. Nature 350:241–243

    Article  CAS  PubMed  Google Scholar 

  • Waites R, Hudson A (1995) Phantastica—a gene required for dorsoventrality of leaves in Antirrhinum majus. Development 121:2143–2154

    CAS  Google Scholar 

  • Yamaguchi T, An G, Hirochika H, Hirano H Y (2003) Genetic interactions of the DROOPING LEAF gene and the ABC genes in floral organ specification in rice. Plant Cell Physiol 44:S183–S183

    Article  Google Scholar 

  • Yamaguchi T, Nagasawa N, Kawasaki S, Matsuoka M, Nagato Y, Hirano H Y (2004) The YABBY gene DROOPING LEAF regulates carpel specification and midrib development in Oryza sativa. Plant Cell 16:500–509

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Miltos Tsiantis.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Canales, C., Grigg, S. & Tsiantis, M. The formation and patterning of leaves: recent advances. Planta 221, 752–756 (2005). https://doi.org/10.1007/s00425-005-1549-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-005-1549-x

Keywords

Navigation