Skip to main content
Log in

Comparative analysis of the two-step reaction catalyzed by prokaryotic and eukaryotic phytochelatin synthase by an ion-pair liquid chromatography assay

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Genes encoding phytochelatin (PC) synthase have been found in higher plants, fission yeast and worm. Recently, kinetic and mutagenic analyses of recombinant PC synthase have been revealing the molecular mechanisms underlying PC synthesis, however, a conclusive model has not been established. To clarify the mechanism of PC synthase found in eukaryotes, we have compared the two-step reactions catalyzed by the prokaryotic Nostoc PC synthase (NsPCS) and the eukaryotic Arabidopsis PC synthase (AtPCS1). Comparative analysis shows that in the first step of PC synthesis corresponding to the cleavage of γ-glutamylcysteine (γ-EC) from glutathione (GSH), free GSH or PCs acts as a donor molecule to supply a γ-EC unit for elongation of the PC chain, and heavy metal ions are required to carry out the cleavage. Furthermore, functional analyses of various mutants of NsPCS and AtPCS1, selected by comparing the sequences of NsPCS and AtPCS1, indicate that the N-terminal region (residues 1–221) in AtPCS1 is the catalytic domain, and in this region, the Cys56 residue is associated with the PC synthesis reaction. These results enable us to propose an advanced model of PC synthesis, describing substrate specificity, heavy metal requirement, and the active site in the enzyme.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3a,b
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8a,b
Fig. 9

Similar content being viewed by others

Abbreviations

PC :

Phytochelatin

AtPCS1 :

Arabidopsis PC synthase

NsPCS :

Nostoc PC synthase

GS H :

Glutathione

γ EC :

γ-Glutamylcystaine

β ME :

β-Mercaptoethanol

IPTG :

Isopropyl-ß-D-thiogalactopyranoside

References

  • Bradford M (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254

    Article  PubMed  CAS  Google Scholar 

  • Clemens S, Kim EJ, Neumann D, Chroeder JI (1999) Tolerance to toxic metals by a gene family of phytochelatin synthases from plants and yeast. EMBO J 18:3325–3333

    Article  PubMed  CAS  Google Scholar 

  • Cobbett CS (1999) A family of phytochelatin synthase genes from plant, fungal and animal species. Trends Plant Sci 4:335–337

    Article  PubMed  Google Scholar 

  • Gekeler W, Grill E, Winnacker E-L, Zenk MH (1988) Algae sequester heavy metals via synthesis of phytochelatin complexes. Arch Microbiol 150:197–202

    Article  CAS  Google Scholar 

  • Gekeler W, Grill E, Winnacker E-L, Zenk MH (1989) Survey of the plant kingdom for the ability to bind heavy metals through phytochelatins. Z Naturforsch 44c:361–369

    CAS  Google Scholar 

  • Grill E, Winnacker E-L, Zenk MH (1985) Phytochelatins: the principal heavy-metal complexing peptides of plants. Science 230:674–676

    Article  PubMed  CAS  Google Scholar 

  • Grill E, Winnacker E-L, Zenk MH (1987) Phytochelatins a class of heavy-metal-binding peptides from plants, are functionally analogous to metallothioneins. Proc Natl Acad Sci USA 84:439–443

    Article  PubMed  CAS  Google Scholar 

  • Grill E, Löffler S, Winnacker E-L, Zenk MH (1989) Phytochelatins, the heavy-metal-binding peptides of plants, are synthesized from glutathione by specific γ-glutamylcysteine dipeptidyl transpeptidase (phytochelatin synthase). Proc Natl Acad Sci USA 86:6838–6842

    Article  PubMed  CAS  Google Scholar 

  • Ha S-B, Smith AP, Howden RW, Dietrich M, Bugg S, O’Connell MJ, Goldsbrough PB, Cobbett CS (1999) Phytochelatin synthase genes from Arabidopsis and the yeast Schzosaccharomyces pombe. Plant Cell 11:1153–1163

    Article  PubMed  CAS  Google Scholar 

  • Hirata K, Tsujimoto Y, Namba T, Ohta T, Hirayanagi N, Miyasaka H, Zenk MH, Miyamoto K (2001) Strong induction of phytochelatin synthesisi by Zn in marine green alga, Dunaliella tertiolacta. J Biosci Bioeng 92:24–29

    Article  PubMed  CAS  Google Scholar 

  • Maier T, Yu C, Küllertz G, Clemens S (2003) Localization and functional characterization of metal-binding sites in phytochelatin synthases. Planta 218:300–308

    Article  PubMed  CAS  Google Scholar 

  • Matsumoto S, Shiraki K, Tsuji N, Hirata K, Miyamoto K, Takagi M (2004) Functional analysis of phytochelatin synthase from Arabidopsis thaliana and its expression in Escherichia coli and Saccharomyces cerevisiae. Sci Tech Adv Mat 5:377–381

    Article  CAS  Google Scholar 

  • Ortiz DF, Ruscitti T, McCue KF, Ow DW (1995) Transport of metal-binding peptides by HMT1, a fission yeast ABC-type vacuolar membrane protein. J Biol Chem 270:4721–4728

    Article  PubMed  CAS  Google Scholar 

  • Oven M, Page JE, Zenk MH, Kutchan TM (2002) Molecular characterization of the homo-phytochelatin synthase of soybean Glycine max. J Biol Chem 277:4747–4754

    Article  PubMed  CAS  Google Scholar 

  • Rensing C, Mitra B, Rosen BP (1997) The zntA gene of Escherichia coli encodes a Zn(II)-translocating P-type ATPase. Proc Natl Acad Sci USA 94:14326–14331

    Article  PubMed  CAS  Google Scholar 

  • Ruotolo R, Peracchi A, Bolchi A, Infusini G, Amoresano A, Ottonello S (2004) Domain organization of phytochelatin synthase. J Biol Chem 279:14686–14693

    Article  PubMed  CAS  Google Scholar 

  • Sauge-Erle S, Cuine S, Carrier P, Vecomte-Pradines C, Luu D-T, Peltier G (2003) Enhanced toxic metal accumulation in engineered bacterial cells expressing Arabidopsis thaliana phytochelatin synthase. Appl Environ Microbiol 69:490–494

    Article  Google Scholar 

  • Tsuji N, Nishikori S, Iwabe O, Shiraki K, Miyasaka H, Takagi M, Hirata K, Miyamoto K (2004) Characterization of phytochelatin synthase-like protein encoded by alr0975 from a prokaryote, Nostoc sp. PCC 7120. Biochem Biophys Res Commun 315:751–755

    Article  PubMed  CAS  Google Scholar 

  • Vatamaniuk OK, Mari S, Lu Y-P, Rea PA (1999) AtPCS1, a phytochelatin synthase from Arabidopsis: isolation and in vitro reconstitution. Proc Natl Acad Sci USA 96:7110–7115

    Article  PubMed  CAS  Google Scholar 

  • Vatamaniuk OK, Mari S, Lu Y-P, Rea PA (2000) Mechanism of heavy metal ion activation of phytochelatin (PC) synthase. J Biol Chem 275:31451–31459

    Article  PubMed  CAS  Google Scholar 

  • Vatamaniuk OK, Mari S, Lang A, Chalasani S, Demkiv LO, Rea PA (2004) Phytochelatin synthase, a dipeptidyl transferase that undergoes multisite acylation with γ-glutamylcysteine during catalysis. J Biol Chem 279:22449–22460

    Article  PubMed  CAS  Google Scholar 

  • Weast RC (1984) A ready-reference book of chemical and physical data. In: CRC handbook of chemistry and physics, 64 edn. CRC press, Boca Raton

  • Zenk MH (1996) Heavy metal detoxification in higher plants—a review. Gene 179:21–30

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We would like to thank Professor Meihart H. Zenk (Biozentrum Universität Halle, Germany) for his precious comments and PCs from S. cucubalus, Dr. Matjaz Oven (Leibniz-Institut für Pflanzenbiochemie, Germany) for helpful suggestions, the Arabidopsis Biological Resource Center (Columbus, OH) for libraries and E. coli genetics stock center (Yale University) for E. coli strain ΔzntA RW3110. This work was supported by the Grants-in-Aid for Scientific Research (No. 15310054 and No. 14406031) from the Ministry of Education, Culture, Sports, Science and Technology.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazumasa Hirata.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Tsuji, N., Nishikori, S., Iwabe, O. et al. Comparative analysis of the two-step reaction catalyzed by prokaryotic and eukaryotic phytochelatin synthase by an ion-pair liquid chromatography assay. Planta 222, 181–191 (2005). https://doi.org/10.1007/s00425-005-1513-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-005-1513-9

Keywords

Navigation