Skip to main content
Log in

Late type of daughter cell wall synthesis in one of the Chlorellaceae, Parachlorella kessleri (Chlorophyta, Trebouxiophyceae)

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Autosporulation is a common mode of propagation for unicellular algae. Autospore-forming species of Chlorellaceae, Chlorella vulgaris Beijerinck, C. sorokiniana Shihira et Krauss, C. lobophora Andreyeva, and Parachlorella kessleri (Fott et Nováková) Krienitz et al. have glucosamine as the main constituent of their rigid cell wall. Recent phylogenetic analyses have showed that the Chlorellaceae divided into two sister groups: the Chlorella-clade and the Parachlorella-clade. We compared the cell wall structure and synthesis of the daughter cell wall in the four species by electron microscopy using rapid freezing and freeze substitution methods. The cell wall of C. vulgaris, C. sorokiniana, and C. lobophora consisted of an electron-dense thin layer with an average thickness of 17–20, 22, and 19 nm, respectively. In these three species, daughter cell wall synthesis occurred on the outer surface of the plasma membrane in the early cell-growth phase. The cell wall of P. kessleri, however, was electron-transparent and 54–59 nm in thickness. Ruthenium red staining of P. kessleri indicated that ruthenium-red-specific polysaccharides accumulated over the outer surface of the plasma membrane. Immunoelectron microscopic observation with an anti-β-1, 3-glucan antibody and staining with wheat germ agglutinin (WGA) indicated that the cell wall contained β-1, 3-glucan and WGA specific N-acetyl-β-D-glucosamine. In P. kessleri, daughter cell wall synthesis began after successive protoplast division. The daughter cell wall synthesis during autosporulation in the four species of Chlorellaceae can be classified into two types—the early and the late types.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  • Albertano P (1990) Morphology, ultrastructure and ecology of an acidophilic alga, Pseudococcomyxa simplex (Mainx) Fott (Chlorococcales). Algol Stud 59:81–95

    Google Scholar 

  • Allard B, Templier J (2000) Comparison of neutral lipid of various trilaminar outer cell wall (TLS)-containing microalgae with emphasis on algaenan occurrence. Phytochemistry 54:369–380

    Google Scholar 

  • Atkinson AW Jr, Gunning BES, John PCL (1972) Sporopollenin in the cell wall of Chlorella and other algae: ultrastructure, chemistry, and incorporation of 14C-acetate, studied in synchronous cultures. Planta 107:1–32

    Google Scholar 

  • Baba M, Osumi M (1987) Transmission and scanning electron microscopic examination of intracellular organelles in freeze-substituted Kloeckera and Saccharomyces cerevisiae yeast cells. J Electron Microsc 5:249–261

    Google Scholar 

  • Friedl T (1995) Inferring taxonomic positions and testing genus level assignment in coccoid green lichen algae: a phylogenetic analysis of 18S ribosomal RNA sequences from Dictyochloropsis reticulata and from members of the genus Myrmecia (Chlorophyta, Trebouxiophyceae cl nov). J Phycol 31:632–639

    Google Scholar 

  • Hanagata N, Chihara M (1997) Concordance between phylogenetic data and ultrastructural features in the classification of Chlorella and related taxa. Phycologia 36(Suppl):38

    Google Scholar 

  • Hayat MA (1989) Principles and techniques of electron microscopy: biological applications, 3rd edn. CRC Press, Boca Raton, pp 377–406

    Google Scholar 

  • Hegewald E, Hanagata N (2000) Phylogenetic studies on Scenedesmaceae (Chlorophyta). Algol Stud 100:29–49

    Google Scholar 

  • Hippe-Sanwald S (1993) Impact of freeze substitution on biological electron microscopy. Microsc Res Tech 24:400–422

    Google Scholar 

  • Hoshina R, Kamako S-i, Imamura N (2004) Phylogenetic position of endosymbiotic green algae in Paramecium bursaria Ehrenberg from Japan. Plant Biol 6:447–453

    Google Scholar 

  • Huss VAR, Frank C, Hartmann EC, Hirmer M, Kloboucek A, Seidel BM, Wenzeler P, Kessler E (1999) Biochemical taxonomy and molecular phylogeny of the genus Chlorella sensu lato (Chlorophyta). J Phycol 35:587–598

    Article  CAS  Google Scholar 

  • Ikeda T, Takeda H (1995) Species-specific differences of pyrenoids in Chlorella (Chlorophyta). J Phycol 31:813–818

    Google Scholar 

  • Komárek J, Fott B (1983) Chlorophyceae (Grünalgen) Ordnung: Chlorococcales. In: Huber-Pestalozzi (ed) Das Phytoplankton des Süβwassers 7 Teil, 1 Hälfte, E Schweizerbart’sche Verlagsbuchhandlung (Nägele u Obermiller), Stuttgart, Germany, pp 1–1044

  • Krienitz L, Huss VAR, Hümmer C (1996) Picoplanktonic Choricystis species (Chlorococcales, Chlorophyta) and problems surrounding the morphologically similar ‘ Nannochloris-like algae’. Phycologia 35 (4):332–341

    Google Scholar 

  • Krienitz L, Takeda H, Hepperle D (1999) Ultrastructure, cell wall composition, and phylogenetic position of Pseudodictyosphaerium jurisii (Chlorococcales, Chlorophyta) including a comparison with other picoplanktonic green algae. Phycologia 38:100–107

    Google Scholar 

  • Krienitz L, Hegewald EH, Hepperle D, Huss VAR, Rohr T, Wolf M (2004) Phylogenetic relationship of Chlorella and Parachlorella gen nov (Chlorophyta, Trebouxiophyceae). Phycologia 43(5):529–542

    Google Scholar 

  • Lonsdale JE, McDonald KL, Jones RL (1999) High pressure freezing and freeze substitution reveal new aspects of fine structure and maintain protein antigenicity in barley aleurone cells. Plant J 17:221–229

    Google Scholar 

  • Nicolas MT, Bassot JM (1993) Freeze substitution after fast-freeze fixation in preparation for immunocytochemistry. Microsc Res Tech 24:474–487

    Google Scholar 

  • Noguchi T, Kakami F (1999) Transformation of trans-Golgi network during the cell cycle in a green alga, Botryococcus braunii. J Plant Res 112:175–186

    Google Scholar 

  • Němcová Y, Kalina T (2000) Cell wall development, microfibril and pyrenoid structure in type strains of Chlorella vulgaris, C kessleri, C sorokiniana compared with C luteoviridis (Trebouxiophyceae, Chlorophyta). Algol Stud 100:95–105

    Google Scholar 

  • Spurr AR (1969) A low-viscosity epoxy resin embedding medium for electron microscopy. J Ultrastruct Res 26:31–42

    CAS  PubMed  Google Scholar 

  • Steinbrecht RA (1993) Freeze-substitution for morphological and immunocytochemical studies in insects. Microsc Res Tech 24:488–504

    Google Scholar 

  • Sugiyama J, Yokota A, Unami E, Onodera Y, Nishida H, Miura Y, Isobe M, Kasahara Y, Sakamoto K (1998) IAM Catalogue of Strains, Second edition. Center for Cellular and Molecular Research Institute of Molecular and Cellular Biosciences, The University of Tokyo

  • Takeda H (1991) Sugar composition of the cell wall and the taxonomy of Chlorella (Chlorophyceae). J Phycol 27:224–232

    Google Scholar 

  • Takeda H (1993) Taxonomical assignment of chlorococal algae from their cell wall composition. Phytochemistry 34:1053–1055

    Google Scholar 

  • Ustinova I, Krienitz L, Huss VAR (2001) Closteriopsis acicularis (G.M. Smith) Belcher et Swale is a fusiform alga closely related to Chlorella kessleri Fott et Nováková (Chlorophyta, Trebouxiophyceae). Eur J Phycol 36:341–351

    Google Scholar 

  • Wild P, Gabriell A, Schraner EM, Pellegrini A, Thomas U, Frederik PM, Stuart MCA, von Fellenberg R (1997) Re-evaluation of the effect of lysozyme of Escherichia coli employing ultra-rapid freezing followed by cryoelectronmicroscopy or freeze substitution. Microsc Res Tech 39:297–304

    Google Scholar 

  • Wolf M, Krienitz L, Heppele D. (2002) Phylogenetic position of Actinastrum hantzschii Lagerheim 1882 (Chlorophyta, Trebouxiophyceae). Algol Stud 104:59–67

    Google Scholar 

  • Yamamoto M, Nozaki H, Kawano S (2001) Evolutionary relationships among multiple modes of cell division in the genus Nannochloris (Chlorophyta) revealed by genome size, actin gene multiplicity, and phylogeny. J Phycol 37:106–120

    Google Scholar 

  • Yamamoto M, Nozaki H, Miyazawa Y, Koide T, Kawano S (2003) Relationships between presence of a mother cell wall and speciation in the unicellular micro alga Nannochloris (Chlorophyta). J Phycol 39:172–284

    Google Scholar 

  • Yamamoto M, Fujishita M, Hirata A, Kawano S (2004) Regeneration and maturation of daughter cell walls in the autospore-forming green alga Chlorella vulgaris (Chlorophyta, Trebouxiphyceae). J Plant Res 117:257–264

    Google Scholar 

Download references

Acknowledgements

We are grateful to Prof. M. Tsuzuki at Tokyo University of Pharmacy and Life Science and Dr. A. Hirata at the University of Tokyo for many stimulating discussions. This work was supported, in part, by grants from the Kurita Water and Environment Foundation (S.K.), BRAIN (S.K.), and Grant-in-Aid for JSPS fellows (M.Y.).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Maki Yamamoto.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Yamamoto, M., Kurihara, I. & Kawano, S. Late type of daughter cell wall synthesis in one of the Chlorellaceae, Parachlorella kessleri (Chlorophyta, Trebouxiophyceae). Planta 221, 766–775 (2005). https://doi.org/10.1007/s00425-005-1486-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-005-1486-8

Keywords

Navigation