Skip to main content
Log in

Rice ascorbate peroxidase gene family encodes functionally diverse isoforms localized in different subcellular compartments

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Aerobic organisms evolved a complex antioxidant system, which protect the cells against oxidative damage caused by partially reduced oxygen intermediates, also known as reactive oxygen species. In plants, ascorbate peroxidases (EC, 1.11.1.11) catalyze the conversion of H2O2 to H2O, using ascorbate as the specific electron donor in this enzymatic reaction. Previously, eight APx genes were identified in the rice (Oryza sativa L.) genome through in silico analysis: two cytosolic isoforms, two putative peroxisomal isoforms, and four putative chloroplastic ones. Using gene-specific probes, we confirmed the presence of the eight APx genes in the rice genome by Southern blot hybridization. Transcript accumulation analysis showed specific expression patterns for each member of the APx family according to developmental stage and in response to salt stress, revealing the complexity of the antioxidant system in plants. Finally, the subcellular localization of rice APx isoforms was determined using GFP-fusion proteins in BY-2 tobacco cells. In agreement with the initial prediction, OSAPX3 was localized in the peroxisomes. On the other hand, the OSAPX6-GFP fusion protein was found in mitochondria of the BY-2 cells, in contrast to the chloroplastic location predicted by sequence analysis. Our findings reveal the functional diversity of the rice APx genes and suggest complementation and coordination of the antioxidant defenses in different cellular compartments during development and abiotic stress.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

APx:

Ascorbate peroxidase

CaMV:

Cauliflower mosaic virus

CAT:

Catalase

DHAR:

Dehydroascorbate reductase

DIC:

Differential interference contrast

EST:

Expressed sequence tag

GFP:

Green fluorescent protein

GPx:

Glutathione peroxidase

GR:

Glutathione reductase

KO:

Knock-out mutants

MDHAR:

Monodehydroascorbate reductase

PCD:

Programmed cell death

pER:

Peroxisomal endoplasmatic reticulum

Prx:

Peroxidase

ROS:

Reactive oxygen species

SOD:

Superoxide dismutase

SRE:

Splicing regulatory cis-element

TMRE:

Tetramethylrhodamine ethyl ester

3´-UTR:

3´untranslated region

References

  • Agrawal GK, Jwa N, Iwahashi H, Rakwal R (2003) Importance of ascorbate peroxidases OsAPx1 and OsAPx2 in the rice pathogen response pathway and growth and reproduction revealed by their transcriptional profiling. Gene 322:93–103

    Article  PubMed  CAS  Google Scholar 

  • Alscher RG, Donahue JL, Cramer CL (1997) Reactive oxygen species and antioxidants: relationships in green cells. Physiol Plant 100:224–233

    Article  CAS  Google Scholar 

  • Asada K (1999) The water-water cycle in chloroplasts: scavenging of active oxygen and dissipation of excess photons. Annu Rev Plant Physiol Plant Mol Biol 50:601–639

    Article  PubMed  CAS  Google Scholar 

  • Causse MA et al (1994) Saturated molecular map of the rice genome based on an interspecific backcross population. Genetics 138:1251–1274

    PubMed  CAS  Google Scholar 

  • Chang CC, Ball L, Fryer MJ, Baker N, Karpinski S, Mullineaux PM (2004) Induction of ASCORBATE PEROXIDASE 2 expression in wounded Arabidopsis leaves does not involve known wound-signalling pathways but is associated with changes in photosynthesis. Plant J 38:499–511

    Article  PubMed  CAS  Google Scholar 

  • Chew O, Whelan J (2004) Just read the message: a model for sorting of proteins between mitochondria and chloroplasts. Trends Plant Sci 9:318–319

    Article  PubMed  CAS  Google Scholar 

  • Chew O, Rudhe C, Glaser E, Whelan J (2003a) Characterization of the targeting signal of dual-targeted pea glutathione reductase. Plant Mol Biol 53:341–356

    Article  CAS  Google Scholar 

  • Chew O, Whelan J, Millar H (2003b) Molecular definition of the ascorbate-glutathione cycle in Arabidopsis mitochondria reveals dual targeting of antioxidant defenses in plants. J Biol Chem 278:46869–46877

    Article  Google Scholar 

  • Church GM, Gilbert W (1984) Genomic sequencing. Proc Natl Acad Sci 81:1991–1995

    Article  PubMed  CAS  Google Scholar 

  • Danna CH, Bartoli CG, Sacco F, Ingala LR, Santa-María GE, Guiamet JJ, Ugalde RA (2003) Thylakoid-bound ascorbate peroxidase mutant exhibits impaired electron transport and photosynthetic activity. Plant Physiol 132:2116–2125

    Article  PubMed  CAS  Google Scholar 

  • Dat J, Vandenabeele S, Vranová E, Van Montagu M, Inzé D, Van Breusegem F (2000) Dual action of the active oxygen species during plant stress response. Cell Mol Life Sci 57:779–795

    Article  PubMed  CAS  Google Scholar 

  • Davletova S, Rizhsky L, Liang H, Shengqiang Z, Oliver DJ, Coutu J, Shulaev V, Schlauch K, Mittler R (2005) Cytosolic ascorbate peroxidase 1 is a central component of the reactive oxygen gene network of arabidopsis. Plant Cell 17:268–281

    Article  PubMed  CAS  Google Scholar 

  • De Leonardis S, Dipierro N, Dipierro S (2000) Purification and characterization of an ascorbate peroxidase from potato tuber mitochondria. Plant Physiol Biochem 38:773–779

    Article  Google Scholar 

  • Feinberg AP, Vogelstein B (1983). A technique for radiolabelling DNA restriction endonuclease fragments to high specific affinity. Anal Biochem 132:6–13

    Article  PubMed  CAS  Google Scholar 

  • van der Fits L, Deakin E, Hoge H, Memelink J (2000) The ternary transformation system: constitutive virG on a compatible plasmid dramatically increases Agrobacterium-mediated plant transformation. Plant Mol Biol 43:495–502

    Article  PubMed  Google Scholar 

  • Fourcroy P, Vansuyt G, Kushnir S, Inzé D, Briat J (2004) Iron-regulated expression of a cytosolic ascorbate peroxidase encoded by the APX1 gene in arabidopsis seedlings. Plant Physiol 134:605–613

    Article  PubMed  CAS  Google Scholar 

  • Fridovich I (1998) Oxygen toxicity: a radical explanation. J Exp Bot 201:1203–1209

    CAS  Google Scholar 

  • Fryer MJ, Ball L, Oxborough K, Karpinski S, Mullineaux PM, Baker NR (2003) Control of Ascorbate Peroxidase 2 expression by hydrogen peroxide and leaf water status during excess light stress reveals a functional organization of Arabidopsis leaves. Plant J 33:691–705

    Article  PubMed  CAS  Google Scholar 

  • Furlani AMC, Furlani PR (1998) Composição e pH de soluções nutritivas para estudos fisiológicos e de seleção de plantas em condições nutricionais adversas. Technical bulletin 121, Instituto Agronômico de Campinas pp 1–34

  • Gadea J, Conejero V, Vera P (1999) Developmental regulation of a cytosolic ascorbate peroxidase gene from tomato plants. Mol Gen Genet 262:212–219

    Article  PubMed  CAS  Google Scholar 

  • Halliwell B, Gutteridge JM (1999) Free radicals in biology and medicine. Oxford University Press, New York p 936

    Google Scholar 

  • Höfgen R, Willmitzer L (1988) Storage of competent cells for Agrobacterium transformation. Nucleic Acids Res 16:9877

    Article  PubMed  Google Scholar 

  • Ishikawa T, Sakai K, Takeda T, Shigeoka S (1995) Cloning and expression of cDNA encoding a new type of ascorbate peroxidase in spinach. FEBS Lett 367:28–32

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa T, Sakai K, Yoshimura K, Takeda T, Shigeoka S (1996) cDNAs encoding spinach stromal and thylakoid-bound ascorbate peroxidase, differing in the presence or absence of their 3′-coding regions. FEBS Lett 384:289–293

    Article  PubMed  CAS  Google Scholar 

  • Ishikawa T, Yoshimura K, Sakai K, Tamoi M, Takeda T, Shigeoka S (1998) Molecular characterization and physiological role of a glyoxysome-bound ascorbate peroxidase from spinach. Plant Cell Physiol 39:23–34

    PubMed  CAS  Google Scholar 

  • Jiménez A, Hernández JA, del Río LA, Sevilla F (1997) Evidence for the presence of the ascorbate-glutathione cycle in mitochondria and peroxisomes of pea leaves. Plant Physiol 114:275–284

    PubMed  Google Scholar 

  • Jiménez A, Hernández JA, Pastori G, del Río LA, Sevilla F (1998) Role of the ascorbate-glutathione cycle of mitochondria and peroxisomes in the senescence of pea leaves. Plant Physiol 118:1327–1335

    Article  PubMed  Google Scholar 

  • Kamada T, Nito K, Hayashi H, Mano S, Hayashi M, Nishimura M (2003) Functional differentiation of peroxisomes revealed by expression profiles of peroxisomal genes in Arabidopsis thaliana. Plant Cell Physiol 44:1275–1289

    Article  PubMed  CAS  Google Scholar 

  • Karimi M, Inzé D, Depicker A (2002) GATEWAY™ vectors for Agrobacterium-mediated plant transformation. Trends Plant Sci 7:193–195

    Article  PubMed  CAS  Google Scholar 

  • Karpinski S, Escobar C, Karpinska B, Creissen G, Mullineaux PM (1997) Photosynthetic electron transport regulates the expression of cytosolic ascorbate peroxidase genes in arabidopsis during excess light stress. Plant Cell 9:627–640

    Article  PubMed  CAS  Google Scholar 

  • Kato K, Matsumoto T, Koiwai S, Mizusaki S, Nishida K, Nogushi M, Tamaki E (1972) Liquid suspension culture of tobacco cells. In: Terui G (ed) Ferment technology today. Society of Fermentation Technology, Osaka, pp 689–695

    Google Scholar 

  • Kunce CM, Trelease RN, Turley RB (1988) Purification and biosynthesis of cottonseed (Gossypium hirsutum L). Biochem J 251:147–155

    PubMed  CAS  Google Scholar 

  • Lee HD, Kim YS, Lee CB (2001) The inductive responses of the antioxidant enzymes by salt stress in the rice (Oryza sativa L.). J Plant Physiol 158:737–745

    Article  CAS  Google Scholar 

  • Lisenbee CS, Heinze M, Trelease RN (2003a) Peroxisomal ascorbate peroxidase resides within a subdomain of rough endoplasmic reticulum in wild-type arabidopsis cells. Plant Physiol 132:870–882

    Article  CAS  Google Scholar 

  • Lisenbee CS, Karnik SK, Trelease RN (2003b) Overexpression and mislocalization of a tail-anchored GFP redefines the identity of peroxisomal ER. Traffic 4:491–501

    Article  CAS  Google Scholar 

  • Livak KJ, Schmittgen TD (2001) Analysis of relative expression data using real-time quantitative PCR and the 2−ΔΔCt method. Methods 25:402–408

    Article  PubMed  CAS  Google Scholar 

  • Madhusudhan R, Ishikawa T, Sawa Y, Shigeoka S, Shibata H (2003) Characterization of an ascorbate peroxidase in plastids of tobacco BY-2 cells. Physiol Plant 117:550–557

    Article  PubMed  CAS  Google Scholar 

  • Mano S, Yamaguchi K, Hayashi M, Nishimura M (1997) Stromal and thylakoid-bound ascorbate peroxidases are produced by alternative splicing in pumpkin. FEBS Lett 413:21–26

    Article  PubMed  CAS  Google Scholar 

  • Margis-Pinheiro M, Zhou XR, Zhu QH, Dennis ES, Upadhyaya NM (2005) Isolation and characterization of a Ds-tagged rice (Oryza sativa L.) GA-responsive dwarf mutant defective in an early step of the gibberellin biosynthesis pathway. Plant Cell Rep 23:819–33

    Article  PubMed  CAS  Google Scholar 

  • Menezes-Benavente L, Kernodle SP, Margis-Pinheiro M, Scandalios JG (2004a) Salt-induced antioxidant metabolism defenses in maize (Zea mays L.) seedlings. Redox Rep 9:29–36

    Article  CAS  Google Scholar 

  • Menezes-Benavente L, Teixeira FK, Kamei CL, Margis-Pinheiro M (2004b) Salt stress induces expression of genes encoding antioxidant enzymes in seedlings of a Brazilian indica rice (Oryza sativa L.). Plant Sci 166:323–331

    Article  CAS  Google Scholar 

  • Mittler R, Feng X, Cohen M (1998) Post-transcriptional suppression of cytosolic ascorbate peroxidase expression during pathogen-induced programmed cell death in tobacco. Plant Cell 10:461–473

    Article  PubMed  CAS  Google Scholar 

  • Mittler R, Vanderauwera S, Gallery M, Van Breusegem F (2004) Reactive oxygen gene network of plants. Trends Plant Sci 9:490–498

    Article  PubMed  CAS  Google Scholar 

  • Mittova V, Guy M, Tal M, Volokita M (2004a) Salinity up-regulates the antioxidative system in root mitochondria and peroxisomes of the wild salt-tolerant tomato species Lycopersicon pennellii. J Exp Bot 55:1105–1113

    Article  CAS  Google Scholar 

  • Mittova V, Theodoulou FL, Kiddle G, Volokita M, Tal M, Foyer CH, Guy M (2004b) Comparison of mitochondrial ascorbate peroxidase in the cultivated tomato, Lycopersicon esculentum, and its wild, salt-tolerant relative, L. pennellii—a role for matrix isoforms in protection against oxidative damage. Plant Cell Environ 27:237–250

    Article  CAS  Google Scholar 

  • Miyake C, Cao WH, Asada K (1993) Purification and molecular properties of thylakoid-bound acorbate peroxidase in spinach chloroplasts. Plant Cell Physiol 34:881–889

    CAS  Google Scholar 

  • Mullen RT, Trelease RN (2000) The sorting signals for peroxisomal membrane-bound ascorbate peroxidase are within its C-terminal tail. J Biol Chem 275:16337–16344

    Article  PubMed  CAS  Google Scholar 

  • Mullen RT, Lisenbee CS, Miernyk JA, Trelease RN (1999) Peroxisomal membrane ascorbate peroxidase is sorted to a membranous network that resembles a subdomain of the endoplasmic reticulum. Plant Cell 11:2167–2185

    Article  PubMed  CAS  Google Scholar 

  • Mullineaux P, Karpinski S (2002) Signal transduction in response to excess light: getting out of the chloroplast. Curr Opin Plant Biol 5:43–48

    Article  PubMed  CAS  Google Scholar 

  • Murashige T, Skoog F (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Plant Physiol 15:473–497

    Article  CAS  Google Scholar 

  • Nishimura M, Hayashi M, Kato A, Yamaguchi H, Mano S (1996) Functional transformation of microbodies in higher plant cells. Cell Struct Funct 21:387–393

    Article  PubMed  CAS  Google Scholar 

  • Noctor G, Foyer CH (1998) Ascorbate and glutathione: keeping active oxygen under control. Annu Rev Plant Physiol Plant Mol Biol 49:249–79

    Article  PubMed  CAS  Google Scholar 

  • Obara K, Sumi K, Fukuda H (2002) The use of multiple transcription starts causes the dual targeting of Arabidopsis putative mondehydroascorbate reductase to both mitochondria and chloroplasts. Plant Cell Physiol 43:697–705

    Article  PubMed  CAS  Google Scholar 

  • Orozco-Cárdenas ML, Narváez-Vasquéz J, Ryan CA (2001) Hydrogen peroxide acts as a second messenger for the induction of defense genes in tomato plants in response to wounding, systemin, and methyl-jasmonate. Plant Cell 13:179–191

    Article  PubMed  Google Scholar 

  • Pnueli L, Liang H, Rozenberg M, Mittler R (2003) Growth suppression, altered stomatal responses, and augmented induction of heat shock protein in cytosolic ascobate peroxidase (Apx1)-deficient Arabidopsis plants. Plant J 34:187–203

    Article  PubMed  CAS  Google Scholar 

  • Ragueh F, Fescure N, Roby D, Marco Y (1989) Gene expression in Nicotiana tabacum in response to compatible and incompatible isolates of Pseudomonas solonaciarum. Physiol Mol Plant Pathol 35:23–33

    Article  Google Scholar 

  • Rizhsky L, Davletova S, Liang H, Mittler R (2004) The zing finger protein Zat12 is required for cytosolic ascorbate peroxidase 1 expression during oxidative stress in Arabidopsis. J Biol Chem 279:11736–11743

    Article  PubMed  CAS  Google Scholar 

  • Sato Y, Murakami T, Funatsuki H, Matsuba S, Saruyama H, Tanida M (2001) Heat shock-mediated APX gene expression and protection against chilling injury in rice seedlings. J Exp Bot 52:145–151

    Article  PubMed  CAS  Google Scholar 

  • Savouré A, Thorin D, Xeu-Jun H, Van Montagu M, Inzé D, Verbruggen N (1999) NaCl and CuSO4 treatments trigger distinct oxidative defense mechanisms in Nicotiana plumbaginifolia L. Plant Cell Environ 22:387–396

    Article  Google Scholar 

  • Scandalios JG (2002) The rise of ROS. Trends Biochem Sci 27:483–486

    Article  PubMed  CAS  Google Scholar 

  • Shigeoka S, Nakano Y, Kitaoka S (1980) Metabolism of hydrogen peroxide in Euglena gracilis Z by L-ascorbic acid peroxidase. Biochem J 186:377–380

    PubMed  CAS  Google Scholar 

  • Shigeoka S, Ishikawa T, Tamoi M, Miyagawa Y, Takeda T, Yabuta Y, Yoshimura K (2002) Regulation and function of ascorbate peroxidase isoenzymes. J Exp Bot 53:1305–1319

    Article  PubMed  CAS  Google Scholar 

  • Silva-Filho MC (2003) One ticket for multiple destinations: dual targeting of proteins to distinct subcellular locations. Curr Opin Plant Biol 6:589–595

    Article  PubMed  CAS  Google Scholar 

  • Teixeira FK, Menezes-Benavente L, Margis R, Margis-Pinheiro M (2004) Analysis of the molecular evolutionary history of the ascorbate peroxidase gene family: inferences from the rice genome. J Mol Evol 59:761–770

    Article  PubMed  CAS  Google Scholar 

  • Vandenabeele S, Van Der Kelen K, Dat J, Gadjev I, Boonefaes T, Morsa S, Rottiers P, Slooten L, Van Montagu M, Zabeau M, Inzé D, Van Breusegem F (2003) A comprehensive analysis of hydrogen peroxide-induced gene expression in tobacco. Proc Natl Acad Sci USA 100:16113–16118

    Article  PubMed  CAS  Google Scholar 

  • Yabuta Y, Motoki T, Yoshimura K, Takeda T, Ishikawa, Shigeoka S (2002) Thylakoid membrane-bound ascorbate peroxidase is a limiting factor of antioxidative systems under photo-oxidative stress. Plant J 32:915–925

    Article  PubMed  CAS  Google Scholar 

  • Yoshimura K, Yabuta Y, Ishikawa T, Shigeoka S (2000) Expression of spinach ascorbate peroxidase isoenzymes in response to oxidative stresses. Plant Physiol 123:223–233

    Article  PubMed  CAS  Google Scholar 

  • Yoshimura K, Yabuta Y, Ishikawa T, Shigeoka S (2002) Identification of a cis element for tissue-specific alternative splicing of chloroplast ascorbate peroxidase pre-mRNA in higher plants. J Biol Chem 277:40623–40632

    Article  PubMed  CAS  Google Scholar 

  • Zhang H, Wang J, Nickel U, Allen RD, Goodman HM (1997) Cloning and expression of an Arabidopsis gene encoding a putative peroxisomal ascorbate peroxidase. Plant Mol Biol 34:967–971

    Article  PubMed  CAS  Google Scholar 

  • Zhu JK (2001) Plant salt tolerance. Trends Plant Sci 6:66–67

    Article  PubMed  CAS  Google Scholar 

  • Zottini M, Formentin E, Scattolin M, Carimi F, Lo Schiavo F, Terzi M (2002) Nitric oxide affects plant mitochondrial functionality in vivo. FEBS Lett 515:75–78

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We greatly acknowledge Dr. Peter Waterhouse and Dr. John Watson for critically reading the manuscript. We are grateful to Bernardo Pascarelli and Dr. Radovan Borojevic for helping with the confocal analysis. We thank Dr. Márcio Alves Ferreira, Dr. Gilberto Saccheto Martins, and Dr. Maité Vaslin for helpful discussions and suggestions. We greatly acknowledge the following organizations and researchers for providing us with EST clones, vectors, and antibodies: Dr. Takuji Sasaki, National Institute of Agrobiological Resources-Rice Genome Research Program (NIAS-RGP), Japan; Dr. Susan McCouch, Cornell University, USA; Dr. Mansour Karimi, Ghent University, Belgium; and Dr. Richard Trelease, Arizona State University, USA. This work was supported by FAPERJ, CNPq, and CAPES.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Márcia Margis-Pinheiro.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Teixeira, F.K., Menezes-Benavente, L., Galvão, V.C. et al. Rice ascorbate peroxidase gene family encodes functionally diverse isoforms localized in different subcellular compartments. Planta 224, 300–314 (2006). https://doi.org/10.1007/s00425-005-0214-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-005-0214-8

Keywords

Navigation