Skip to main content
Log in

Expression of PsGRP1, a novel glycine rich protein gene of Pisum sativum, is induced in developing fruit and seed and by ABA in pistil and root

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

A novel glycine-rich protein gene, PsGRP1, has been identified in Pisum sativum L. Accumulation of PsGRP1 transcripts was observed in reproductive organs and vegetative tissues. They were localized in endocarp sclerenchyma during fruit development in cells that will lignify. PsGRP1 expression was also detected in senescent pistils and developing seeds and induced by ABA treatment in presenescent pistils. A raise in the expression was also observed in roots after treatment with ABA or mannitol but not under cold stress. A mannitol treatment induced a rise in ABA levels and fluridone treatment counteracted the mannitol induction of PsGRP1 expression. The results suggest a possible role for PsGRP1 in differentiation of the endocarp sclerenchyma and during seed development, pistil senescence and osmotic stress under ABA control.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Abbreviations

GRP:

Glycine-rich protein

ABA:

Abscisic acid

GA3 :

Gibberellic acid

BA:

6-Benzyladenine

2,4-D:

2,4-Dichlorophenoxyacetic acid

References

  • Alabadí D, Carbonell J (1999) Differential expression of two spermidine synthase genes during early fruit development and in vegetative tissues of pea. Plant Mol Biol 39:933–943

    Article  PubMed  Google Scholar 

  • Carbonell J, García-Martínez JL (1980) Fruit-set of unpollinated ovaries of Pisum sativum L. Influence of vegetative parts. Planta 147:4-450

    Google Scholar 

  • Carbonell J, García-Martínez JL (1985) Ribulose 1,5-bisphosphate carboxylase and fruit set or degeneration of unpollinated ovaries of Pisum sativum L. Planta 164:534–539

    Article  CAS  Google Scholar 

  • Cercós M, Carbonell J (1993) Purification and characterization of a thiol-protease induced during senescence of unpollinated ovaries of Pisum sativum. Physiol Plant 88:267–274

    Article  Google Scholar 

  • Cercós M, Harris N, Carbonell J (1993) Immunolocalization of a thiol-protease induced during the senescence of unpollinated pea ovaries. Physiol Plant 88:275–280

    Article  Google Scholar 

  • Cercós M, Santamaría S, Carbonell J (1999) Cloning and characterization of TPE4A, a thiol-protease gene induced during ovary senescence and seed germination in pea. Plant Physiol 119:1341–1348

    Article  PubMed  Google Scholar 

  • Chen CT, Kao CH (1993) Osmotic stress and water stress have opposite effects on putrescine and proline production in excised rice leaves. Plant Growth Regul 13:197–202

    Article  Google Scholar 

  • Church GM, Gilbert W (1984) Genomic sequencing. Proc Natl Acad Sci USA 81:1991–1995

    Article  PubMed  CAS  Google Scholar 

  • Condit CM (1993) Developmental expression and localization of petunia glycine-rich protein-1. Plant Cell 5:277–288

    Article  PubMed  CAS  Google Scholar 

  • Cornels H, Ichinose Y, Barz W (2000) Characterization of cDNAs encoding two glycine-rich proteins in chickpea (Cicer arietinum L.): accumulation in response to fungal infection and other stress factors. Plant Sci 154:83–88

    Article  PubMed  CAS  Google Scholar 

  • Creelman RA, Mullet JE (1991) Water deficit modulates gene expression in growing zones of soybean seedlings. Analysis of differentially expressed cDNAs, a new beta-tubulin gene, and expression of genes encoding cell wall proteins. Plant Mol Biol 17:591–608

    Article  PubMed  CAS  Google Scholar 

  • Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA minipreparation: version II. Plant Mol Biol Reptr 1: 19–21

    Article  CAS  Google Scholar 

  • Fahn A, Zohary M (1955) On the pericarpal structure of the legumen, its evolution and relation to dehiscence. Phytomorphology 5:99–111

    Google Scholar 

  • Ferrándiz C, Pelaz S, Yanofsky MF (1999) Control of carpel and fruit development in Arabidopsis. Annu Rev Biochem 68:321–354

    Article  PubMed  Google Scholar 

  • Frey A, Godin B, Bonnet M, Sotta B, Marion-Poll A (2004) Maternal synthesis of abscisic acid controls seed development and yield in Nicotiana plumbaginifolia. Planta 218:958–964

    Article  PubMed  CAS  Google Scholar 

  • García-Martínez JL, Carbonell J (1980) Fruit set of unpollinated ovaries of Pisum sativum L. Influence of plant growth regulators. Planta 147:451–456

    Google Scholar 

  • Gillaspy G, Ben-David H, Gruissem W (1993) Fruits: a development perspective. Plant Cell 5:1439–1451

    Article  PubMed  Google Scholar 

  • Granell A, Harris N, Pisabarro AG, Carbonell J (1992) Temporal and spatial expression of a thiol protease gene during pea ovary senescence and its regulation by gibberellin. Plant J 2:907–915

    PubMed  CAS  Google Scholar 

  • Iglesias R, Babiano MJ (1996) ABA levels in chick-pea seeds during the first twenty-four hours of germination. Effect of polyethylene-glycol. Phytochemistry 41:681–683

    Article  CAS  Google Scholar 

  • Jackson DP (1992) In situ hybridization in plants. In: Bowles DJ, Gurr SJ, Pherenson M (eds) Molecular plant pathology: a practical approach. Oxford University Press, Oxford, pp 163–174

    Google Scholar 

  • Keller B (1993) Structural cell wall proteins. Plant Physiol 101:1127–1130

    PubMed  CAS  Google Scholar 

  • Keller B, Sauer N, Lamb CJ (1988) Glycine-rich cell wall proteins in bean: gene structure and association of the protein with the vascular system. EMBO J 7:3625–3633

    PubMed  CAS  Google Scholar 

  • Keller B, Templeton MD, Lamb CJ (1989) Specific localization of a plant cell wall glycine-rich protein in protoxylem cells of the vascular system. Proc Natl Acad Sci USA 86:1529–1533

    Article  PubMed  CAS  Google Scholar 

  • Keller B, Nierhaus-Wunderwald D, Amrhein N (1990) Deposition of glycine-rich structural protein in xylem cell walls of french bean seedlings is independent of lignification. J Struct Biol 104:144–149

    Article  CAS  Google Scholar 

  • Laberge S, Castonguay Y, Vézina LP (1993) New cold- and drought-regulated gene from Medicago sativa. Plant Physiol 101:1411–1412

    Article  PubMed  CAS  Google Scholar 

  • Leung J, Giraudat J (1998) Abscisic acid signal transduction. Annu Rev Plant Physiol Plant Mol Biol 49:199–222

    Article  PubMed  CAS  Google Scholar 

  • Liang P, Pardee AB (1992) Differential display of eukaryotic messenger RNA by means of polymerase chain reaction. Science 257:967–971

    Article  PubMed  CAS  Google Scholar 

  • Liang P, Averboukh L, Pardee AB (1993) Distribution and cloning eukaryotic mRNAs by means of differential display: refinements and optimization. Nucleic Acids Res 21:3269–3275

    Article  PubMed  CAS  Google Scholar 

  • Luo M, Liu JH, Mohapatra S, Hill RD, Mohapatra SS (1992) Characterization of a gene family encoding abscisic acid- and environmental stress-inducible proteins of alfalfa. J Biol Chem 267:15367–15374

    PubMed  CAS  Google Scholar 

  • Marcote MJ, Carbonell J (2000) Transient expression of a pea MAP kinase gene induced by gibberellic acid and 6-benzyladenine in unpollinated pea ovaries. Plant Mol Biol 44:177–186

    Article  PubMed  CAS  Google Scholar 

  • Molina A, Mena M, Carbonero P, García-Olmedo F (1997) Differential expression of pathogen-responsive genes encoding two types of glycine-rich proteins in barley. Plant Mol Biol 33:803–810

    Article  PubMed  CAS  Google Scholar 

  • Mortensen LC, Rodríguez D, Nicolás G, Eriksen EN, Nicolás C (2004) Decline in a seed-specific abscisic acid-responsive glycine-rich protein (GRPF1) mRNA may reflect the release of seed dormancy in Fagus sylvatica during moist prechilling. Seed Sci Res 14:27–34

    Article  CAS  Google Scholar 

  • Mundy J, Chua NH (1988) Abscisic acid and water-stress induce the expression of a novel rice gene. EMBO J 7:2279–2286

    PubMed  CAS  Google Scholar 

  • Nicolás C, Rodríguez D, Poulsen F, Eriksen EN, Nicolás G (1997) The expression of an abscisic acid-responsive glycine-rich protein coincides with the level of seed dormancy in Fagus sylvatica. Plant Cell Physiol 38:1303–1310

    PubMed  Google Scholar 

  • Nielsen H, Engelbrecht J, Brunak S, Von Heijne G (1997) Identification of prokaryotic and eukaryotic signal peptides and prediction of their cleavage sites. Protein Eng 10:1–6

    Article  PubMed  CAS  Google Scholar 

  • Pate JS, Flinn AM (1977) Fruit and seed development. In: Sutcliffe JF, Pate JS, (eds) The physiology of the garden pea. Academic, London, pp 431–468

    Google Scholar 

  • Pérez-Amador MA, Carbonell J (1995) Arginine decarboxylase and putrescine oxidase in ovaries of Pisum sativum L. Changes during ovary senescence and early stages of fruit development. Plant Physiol 107:865–872

    PubMed  Google Scholar 

  • Pérez-Amador MA, Carbonell J, Granell A (1995) Expression of arginine decarboxylase is induced during early fruit development and in young tissues of Pisum sativum L. Plant Mol Biol 28:997–1009

    Article  PubMed  Google Scholar 

  • Reddy ASN, Poovaiah BW (1987) Accumulation of a glycine-rich protein in auxin–deprived strawberry fruits. Biochem Biophys Res Commun 147:885–891

    Article  PubMed  CAS  Google Scholar 

  • Rodrigo MJ, García-Martínez JL (1998) Hormonal control of parthenocarpic ovary growth by the apical shoot in pea. Plant Physiol 116:511–518

    Article  PubMed  CAS  Google Scholar 

  • Sachetto-Martins G, Fernandes LD, Felix DB, de Oliveira AD (1995) Preferential transcriptional activity of a glycine-rich protein gene from Arabidopsis thaliana in protoderm-derived cells. Int J Plant Sci 156:460–470

    Article  CAS  Google Scholar 

  • Sachetto-Martins G, Franco LO, de Oliveira AD (2000) Plant glycine rich proteins, a gene family or just a common motif? Biochim Biophys Acta 1492:1–14

    PubMed  CAS  Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual. Cold Spring Harbor Laboratory Press, Cold Spring Harbor

    Google Scholar 

  • Sánchez-Beltrán MJ, Carbonell J, García-Martínez JL, López-Díaz I (1992) Gene expression during two alternative pathways of ovary development in Pisum sativum: fruit development and ovary senescence. Physiol Plant 85:69–76

    Article  Google Scholar 

  • Showalter AM (1993) Structure and function of plant cell wall proteins. Plant Cell 5:9–23

    Article  PubMed  CAS  Google Scholar 

  • Stafstrom JP, Ripley BD, Devitt ML, Drake B (1998) Dormancy-associated gene expression in pea axillary buds. Cloning and expression of PsDRM1 and PsDRM2. Planta 205:547-552

    Article  PubMed  CAS  Google Scholar 

  • Sutcliffe JF, Bryant JA (1977) Biochemistry of germination. In: Sutcliffe JF, Pate JS (eds) The physiology of the garden pea. Academic, London, pp 431–468

    Google Scholar 

  • Vercher Y, Carbonell J (1991) Changes in the structure of ovary tissues and in the ultrastructure of mesocarp cells during ovary senescence or fruit development induced by plant growth substances in Pisum sativum. Physiol Plant 81:518–526

    Article  CAS  Google Scholar 

  • Vercher Y, Molowny A, Carbonell J (1987) Gibberellic acid effects on the ultrastructure of endocarp cells of unpollinated ovaries of Pisum sativum. Physiol Plant 71:302–308

    Article  CAS  Google Scholar 

  • Walker-Simmons MK, Abrams SR (1991) Use of ABA inmmunoassays. In: Davies WJ, Jones HG (eds) Abscisic acid: physiology and biochemistry. Bios Scientific, Oxford, pp 53–61

    Google Scholar 

  • Ye ZH, Song YR, Marcus A, Varner JE (1991) Comparative localization of three classes of cell wall proteins. Plant J 1:175–183

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

The authors wish to thank Dr. J. Rose (Cornell University), Dr. D. Alabadí, and Dr. I. Zarra for critical reading of the manuscript, Ms M.A. Argomániz for her excellent technical assistance, Dr. M.D. Gómez for help in the in-situ hybridization experiments, and Dr. T. Lafuente for help in ABA determinations. Financial support was provided by grants BIO2002-0483-C03-02 (MCyT, Spain) and BIO4 CT960621 (EU).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Juan Carbonell.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Urbez, C., Cercós, M., Perez-Amador, M.A. et al. Expression of PsGRP1, a novel glycine rich protein gene of Pisum sativum, is induced in developing fruit and seed and by ABA in pistil and root. Planta 223, 1292–1302 (2006). https://doi.org/10.1007/s00425-005-0178-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-005-0178-8

Keywords

Navigation