Skip to main content
Log in

Characterizations and fine mapping of a mutant gene for high tillering and dwarf in rice (Oryza sativa L.)

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

A rice htd-1 mutant, related to tillering and dwarfing, was characterized. We show that the htd-1 mutant increases its tiller number by releasing axillary buds from dormant stage rather than by initiating more axillary buds. The dwarf is caused by averagely reducing each internode and panicle. Based on this dwarfing pattern, the htd-1 mutant could be grouped into dn-type dwarf defined by Takeda (Gamma Field Symp 16:1, 1977). In addition, the dwarfing of the htd-1 mutant was found independent of GA based on the analyses of two GA-mediated processes. Based on the quantitative determination of IAA and ABA and application of the two hormones exogenously to the seedlings, we inferred that the high tillering capacity of the htd-1 mutant should not be attributed to a defect in the synthesis of IAA or ABA. The genetic analysis of the htd-1 mutant indicated that the phenotypes of high tillering and dwarf were controlled by a recessive gene, termed htd1. By map-based cloning, the htd1 gene was fine mapped in a 30-kb DNA region on chromosome 4. Sequencing the target DNA region and comparing the counterpart DNA sequences between the htd-1 mutant and other rice varieties revealed a nucleotide substitution corresponding to an amino acid substitution from prolin to leucine in a predicted rice gene, OsCCD7, the rice orthologous gene of AtMAX3/CCD7. With the evidence of the association between the presence of one amino acid change in OsCCD7 and the abnormal phenotypes of the htd-1 mutant, OsCCD7 was identified as the candidate of the HTD1 gene.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

ABA:

Abscisic acid

BR:

Brassinosteroid

GA:

Gibberellin acid

htd1 :

High-tillering dwarf 1

IAA:

Indole-3-acetic acid

sd1 :

Semidwarf-1

References

  • Akagi H, Yokozeki Y, Inagaki A, Nakamura A, Fujimura T (1996) A codominant DNA marker closely linked to the rice nuclear restorer gene, RF-1, identified with inter-SSR fingerprinting. Genome 39:1205–1209

    PubMed  CAS  Google Scholar 

  • Ashikari M, Wu J, Yano M, Sasaki T, Yoshimura A (1999) Rice gibberellin-insensitive dwarf mutant gene Dwarf 1 encodes the alpha-subunit of GTP-binding protein. Proc Natl Acad Sci USA 96:10284–10289

    Article  PubMed  CAS  Google Scholar 

  • Beveridge CA, Symons GM, Turnbull CG (2000) Auxin inhibition of decapitation-induced branching is dependent on graft-transmissible signals regulated by genes Rms1 and Rms2. Plant Physiol 123:689–698

    Article  PubMed  CAS  Google Scholar 

  • Booker J, Auldridge M, Wills S, McCarty D, Klee H, Leyser O (2004) MAX3/CCD7 is a carotenoid cleavage dioxygenase required for the synthesis of a novel plant signaling molecule. Curr Biol 14:1232–1238

    Article  PubMed  CAS  Google Scholar 

  • Chatfield SP, Stirnberg P, Forde BG, Leyser O (2000) The hormonal regulation of axillary bud growth in Arabidopsis. Plant J 24:159–169

    Article  PubMed  CAS  Google Scholar 

  • Chen X, Wu R (1997) Direct amplification of unknown genes and fragments by uneven polymerase chain reaction. Gene 185:195–199

    Article  PubMed  CAS  Google Scholar 

  • Chen X, Temnykh S, Xu Y,Cho YG, McCouch SR (1997) Development of a microsatellite framework map providing genome-wide coverage in rice (Oryza sativa L.). Theor Appl Genet 95:553–567

    Article  CAS  Google Scholar 

  • Cline MG (1991) Apical dominance. Bot Rev 57:318–358

    Google Scholar 

  • Hong Z, Ueguchi-Tanaka M, Umemura K, Uozu S, Fujioka S, Takatsuto S, Yoshida S, Ashikari M, Kitano H, Matsuoka M (2003) A rice brassinosteroid-deficient mutant, ebisu dwarf (d2), is caused by a loss of function of a new member of cytochrome P450. Plant Cell 15:2900–2910

    Article  PubMed  CAS  Google Scholar 

  • Hoshikawa K (1989) The growing rice plant. Nobunkyo, Tokyo

    Google Scholar 

  • Ishikawa S, Maekawa M, Arite T, Onishi K, Takamure I, Kyozuka J (2005) Suppression of tiller bud activity in tillering dwarf mutants of rice. Plant Cell Physiol 46:79–86

    Article  PubMed  CAS  Google Scholar 

  • Iwata N, Takamure I, Wu HK, Siddinq EA, Rutger J N (1995) List of genes for various traits (with chromosome and main literature). Rice Genet Newsl 12:61–93

    Google Scholar 

  • Jiang GH, Liang GH, Zhai WX, Gu MH, Lu RL, Xu JC, Zhu LH (2002) Genetic mapping of a new semi-dwarf gene, sd-t(t), in indica rice and estimating of the physical distance of the mapping region. Sci China (Ser C) 45:388–396

    Article  CAS  Google Scholar 

  • Klee HJ, Horsch RB, Hinchee MA, Hein MB, Hoffmann NL (1987) The effects of overproduction of two Agrobacterium tumefaciens T-DNA auxin biosynthetic gene products in transgenic petunia plants. Genes Dev 1:86–96

    Article  CAS  Google Scholar 

  • Konieczny A, Ausubel FM (1993) A procedure for mapping Arabidopsis mutations using co-dominant ecotype-specific PCR-based markers. Plant J 4:403–410

    Article  PubMed  CAS  Google Scholar 

  • Lander ES, Green P, Abrahamson J, Barlow A, Daly MJ, Lincoln SE, Newburg L (1987) MAPMAKER: an interactive computer package for constructing primary genetic linkage maps of experimental and natural populations. Genomics 1:174–181

    Article  PubMed  CAS  Google Scholar 

  • Li X, Qian Q, Fu Z, Wang Y, Xiong G, Zeng D, Wang X, Liu X, Teng S, Hiroshi F, Yuan M, Luo D, Han B, Li J (2003) Control of tillering in rice. Nature 422:618–621

    Article  PubMed  CAS  Google Scholar 

  • Liang GH, Pan XB, Gu MH, Ji CQ (1995) The isolation and genetic identification of a semidwarf gene from an indica rice variety Aitaiyin 2. Chinese J Rice Sci 9:189–192

    Google Scholar 

  • McCouch S, Kochert G, Yu ZH, Wang ZY, Khush GS, Coffman WR, Tanksley SD (1988) Molecular mapping of rice chromosomes. Theor Appl Genet 76:815–820

    Article  CAS  Google Scholar 

  • Mitsunaga S, Tashiro T, Yamaguchi J (1994) Identification and characterization of gibberellin-insensitive mutants selected from among dwarf mutants of rice. Theor Appl Genet 87:705–712

    Article  CAS  Google Scholar 

  • Monna L, Kitazawa N, Yoshino R, Suzuki J, Masuda H, Maehara Y, Tanji M, Sato M, Nasu S, Minobe Y (2002) Positional cloning of rice semidwarfing gene, sd-1: rice "green revolution gene" encodes a mutant enzyme involved in gibberellin synthesis. DNA Res 9:11–17

    Article  PubMed  CAS  Google Scholar 

  • Murakami H (1968) A new rice seedling test for gibberellins, microdrop method and its use for testing extracts of rice and morning glory. Bot Mag Tokyo 81:33–43

    Google Scholar 

  • Panigrahi BM, Audus L (1966) Apical dominance in Vicia faba. Ann Bot 30:457–473

    Google Scholar 

  • Romano CP, Hein MB, Klee HJ (1991) Inactivation of auxin in tobacco transformed with the indoleacetic acid-lysine synthetase gene of Pseudomonas savastanoi. Genes Dev 5:438–446

    Article  PubMed  CAS  Google Scholar 

  • Sasaki A, Ashikari M, Ueguchi-Tanaka M, Itoh H, Nishimura A, Swapan D, Ishiyama K, Saito T, Kobayashi M, Khush GS, Kitano H, Matsuoka M (2002) Green revolution: a mutant gibberellin-synthesis gene in rice. Nature 416:701–702

    Article  PubMed  CAS  Google Scholar 

  • Schmelz EA, Engelberth J, Alborn HT, O’Donnell P, Sammons M, Toshima H, Tumlinson JH, 3rd (2003) Simultaneous analysis of phytohormones, phytotoxins, and volatile organic compounds in plants. Proc Natl Acad Sci USA 100:10552–10557

    Article  PubMed  CAS  Google Scholar 

  • Schwartz SH, Qin X, Loewen MC (2004) The biochemical characterization of two carotenoid cleavage enzymes from Arabidopsis indicates that a carotenoid-derived compound inhibits lateral branching. J Biol Chem 279:46940–46945

    Article  PubMed  CAS  Google Scholar 

  • Sorefan K, Booker J, Haurogne K, Goussot M, Bainbridge K, Foo E, Chatfield S, Ward S, Beveridge C, Rameau C, Leyser O (2003) MAX4 and RMS1 are orthologous dioxygenase-like genes that regulate shoot branching in Arabidopsis and pea. Genes Dev 17:1469–1474

    Article  PubMed  CAS  Google Scholar 

  • Spielmeyer W, Ellis MH, Chandler PM (2002) Semidwarf (sd-1), "green revolution" rice, contains a defective gibberellin 20-oxidase gene. Proc Natl Acad Sci USA 99:9043–9048

    Article  PubMed  CAS  Google Scholar 

  • Stirnberg P, van De Sande K, Leyser HM (2002) MAX1 and MAX2 control shoot lateral branching in Arabidopsis. Development 129:1131–1141

    PubMed  CAS  Google Scholar 

  • Takeda K (1977) Internode elongation and dwarfism in some gramineous plants. Gamma Field Sym 16:1–18

    Google Scholar 

  • Tan BC, Joseph LM, Deng WT, Liu L, Li QB, Cline K, McCarty DR (2003) Molecular characterization of the Arabidopsis 9- cis epoxycarotenoid dioxygenase gene family. Plant J 35:44–56

    Article  PubMed  CAS  Google Scholar 

  • Thimann KV, Skoog F (1934) On the inhibition of bud development and other functions of growth substance in Vicia faba. Proc R Soc Lond B Biol Sci 114:317–339

    Article  CAS  Google Scholar 

  • Turnbull CG, Booker JP, Leyser HM (2002) Micrografting techniques for testing long-distance signalling in Arabidopsis. Plant J 32:255–262

    Article  PubMed  CAS  Google Scholar 

  • Ueguchi-Tanaka M, Fujisawa Y, Kobayashi M, Ashikari M, Iwasaki Y, Kitano H, Matsuoka M (2000) Rice dwarf mutant d1, which is defective in the alpha subunit of the heterotrimeric G protein, affects gibberellin signal transduction. Proc Natl Acad Sci USA 97:11638–11643

    Article  PubMed  CAS  Google Scholar 

  • Wu G, Wilson WL, McClung AM (1998) Contribution of rice tillers to dry matter accumulation and yield. Agron J 90:317–323

    Article  Google Scholar 

  • Yamamuro C, Ihara Y, Wu X, Noguchi T, Fujioka S, Takatsuto S, Ashikari M, Kitano H, Matsuoka M (2000) Loss of function of a rice brassinosteroid insensitive1 homolog prevents internode elongation and bending of the lamina joint. Plant Cell 12:1591–1606

    Article  PubMed  CAS  Google Scholar 

  • Yan JQ, Zhu J, He CX, Benmoussa M, Wu P (1998) Quantitative trait loci analysis for the developmental behavior of tiller number in rice (Oryza sativa L.). Theor Appl Genet 97:267–274

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This project was supported by the grants from National Natural Science Foundation of China (90208001), Chinese Academy of Sciences (KSCX2-SW-306), the National Basic Research Program (2004CB117201). And this work was also kindly supported by grants from Chinese Academy of Sciences (CAS) and Plant Gene Research Centre (Beijing).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lihuang Zhu.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zou, J., Chen, Z., Zhang, S. et al. Characterizations and fine mapping of a mutant gene for high tillering and dwarf in rice (Oryza sativa L.). Planta 222, 604–612 (2005). https://doi.org/10.1007/s00425-005-0007-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-005-0007-0

Keywords

Navigation