Skip to main content
Log in

Molecular and biochemical characterization of the Capsicum annuum calcium-dependent protein kinase 3 (CaCDPK3) gene induced by abiotic and biotic stresses

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

The isolated full-length Capsicum annuum calcium-dependent protein kinase 3 (CaCDPK3) cDNA clone was selected from the chili pepper expressed sequence tag database (http://www.pdrc.re.kr/ks200201/pepper.html). Phylogenetic analysis based on the deduced amino acid sequence of CaCDPK3 cDNA revealed significant sequence similarity to the winter squash (Cucurbita maxima) CmCPK2 gene (81% identity). Genomic gel blot analysis disclosed that CaCDPK3 belongs to a multigene family in the pepper genome. CaCDPK3 expression was root tissue-specific, as shown by Northern blot data. The gene was rapidly induced in response to various osmotic stress factors and exogenous abscisic acid application in pepper leaves. Moreover, CaCDPK3 RNA expression was induced by an incompatible pathogen and by plant defense-related chemicals such as ethephon, salicylic acid and jasmonic acid. The biochemical properties of CaCDPK3 were investigated using a CaCDPK3 and glutathione S-transferase (GST) fusion protein. The recombinant proteins retained calcium-binding ability, and displayed autophosphorylation activity in vitro in a calcium-dependent manner. Further transient-expression studies showed that CaCDPK3 fused with soluble modified green fluorescent protein (smGFP) localized to the cytosol in chili pepper protoplasts. We propose that CaCDPK3 is implicated in biotic and abiotic stresses in pepper plants.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1a–c
Fig. 2a–c
Fig. 3a–c
Fig. 4a–d
Fig. 5a–d
Fig. 6a, b

Similar content being viewed by others

Abbreviations

ABA :

Abscisic acid

CDPK :

Calcium-dependent protein kinase

EST :

Expressed sequence tag

MeJA :

Methyl jasmonic acid

smGFP :

Soluble modified green fluorescent protein

UTR :

Untranslated region

PCR :

Polymerase chain reaction

SA :

Salicylic acid

SAP :

Shrimp alkaline phosphatase

References

  • Abel S, Theologis A (1994) Transient transformation of Arabidopsis leaf protoplasts: a versatile system to study gene expression. Plant J 5:421–427

    CAS  PubMed  Google Scholar 

  • Anil VS, Rao KS (2001) Purification and characterization of Ca2+-dependent protein kinase from sandalwood (Santalum album L.): evidence for Ca2+-induced conformational changes. Phytochemistry 58:203–212

    Article  CAS  PubMed  Google Scholar 

  • Arabidopsis Genome Initiative (2000) Analysis of the genome of the flowering plant Arabidopsis thaliana. Nature 408:820–826

    Article  PubMed  Google Scholar 

  • Asano T, Kunieda N, Omura Y, Ibe H, Kawasaki T, Takano M, Sato, Furuhashi H, Mujin T, Takaiwa F, Wu C-y, Tada Y, Satozawa T, Sakamoto M, Shimada H (2002) Rice SPK, a calmodulin-like domain protein kinase, is required for storage product accumulation during seed development: phosphorylation of sucrose synthase is a possible factor. Plant Cell 14:619–628

    Article  CAS  PubMed  Google Scholar 

  • Botella JR, Arteca JM, Somodevilla M, Arteca RN (1996) Calcium-dependent protein kinase gene expression in response to physical and chemical stimuli in mungbean (Vigna radiata) Plant Mol Biol 30:1129–1137

    Google Scholar 

  • Bray EA (1993) Molecular responses to water deficit. Plant Physiol 103:1035–1040

    CAS  PubMed  Google Scholar 

  • Cheng SH, Willman MR, Chen HC, Sheen J (2002) Calcium signaling through protein kinases. The Arabidopsis calcium-dependent protein kinase gene family. Plant Physiol 129:49–55

    Google Scholar 

  • Choi D, Kime HM, Yun HK, Park JA, Kim WT, Bok SH (1996) Molecular cloning of a metallothionein-like gene from Nicotiana glutinosa L. and its induction by wounding and tobacco mosaic virus infection. Plant Physiol 112:353–359

    Article  CAS  PubMed  Google Scholar 

  • Chung E, Kim SY, Yi S, Choi D (2003) Capsicum annuum dehydrin, an osmotic-stress gene in hot pepper plants. Mol Cells 15:327–332

    CAS  PubMed  Google Scholar 

  • Church GM, Gilbert W (1984) Genomic sequencing. Proc Natl Sci USA 81:1991–1995

    CAS  Google Scholar 

  • Cohen A, Bray EA (1990) Characterization of three mRNAs that accumulate in wilted tomato leaves in response to elevated levels of endogenous abscisic acid. Planta 182:27–33

    Article  CAS  Google Scholar 

  • Creelman RA, Mullet JE (1997) Biosynthesis and action of jasmonates in plants. Annu Rev Plant Physiol Plant Mol Biol 48:355–381

    Article  CAS  PubMed  Google Scholar 

  • David SJ, Vierstra RD (1996) Soluble derivatives of green fluorescent protein (GFP) for use in Arabidopsis thaliana. Weeds World 3:43–48

    Google Scholar 

  • Dellaporta SL, Wood J, Hicks JB (1983) A plant DNA minipreparation: version II. Plant Mol Biol Rep 1:19–21

    CAS  Google Scholar 

  • Durner J, Shah J, Klessig DF (1997) Salicylic acid and disease resistance in plants. Trends Plant Sci 2:266–274

    Article  Google Scholar 

  • Ecker JR (1995) The ethylene signal transduction pathway in plants. Science 268:667–675

    CAS  PubMed  Google Scholar 

  • Evans NH, McAinsh MR, Hetherington AM (2001) Calcium oscillations in higher plants. Curr Opin Plant Biol 4:415–420

    Article  CAS  PubMed  Google Scholar 

  • Farmer PK, Choi JH (1999) Calcium and phospholipid activation of a recombinant calcium-dependent protein kinase (DcCPK1) from carrot (Daucus carota L.). Biochim Biophys Acta 1434:6–17

    Article  CAS  PubMed  Google Scholar 

  • Harmon AC, Putnam-Evans C, Cormier MJ (1987) A calcium-dependent but calmodulin-independent protein kinase from soybean. Plant Physiol 83:830–837

    CAS  Google Scholar 

  • Harmon AC, Gribskov M, Gubrium E, Harper JF (2001) The CDPK superfamily of protein kinases. New Phytol 151:175–183

    Article  CAS  Google Scholar 

  • Harper JF, Sussman MR, Schaller GE, Putnam-Evans C, Charbonneau H, Harmon AC (1991) A calcium-dependent protein kinase with a regulatory domain similar to calmodulin. Science 252:951–954

    CAS  PubMed  Google Scholar 

  • Heath MC (2000) Hypersensitive response-related death. Plant Mol Biol 44:321–334

    Article  CAS  PubMed  Google Scholar 

  • Knight H, Trewavas AJ, Knight MR (1997) Calcium signaling in Arabidopsis thaliana responding to drought and salinity. Plant J 12:1067–1078

    Article  CAS  PubMed  Google Scholar 

  • Laemmli U (1970) Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685

    PubMed  Google Scholar 

  • Lee S, Kim SY, Chung E, Joung Y-H, Pai H-S, Hur C-G, Choi D (2004) EST and microarray analyses of pathogen responsive genes in hot pepper (Capsicum annuum L.) non-host resistance against soybean pustule pathogen (Xanthomonas axonopodis pv. glycines). Funct Integr Genomics 4:196–205

    Article  PubMed  Google Scholar 

  • Lee SS, Cho HS, Yoon GM, Ahn J-W, Kim K-H, Pai H-S (2003) Interaction of NtCDPK1 calcium-dependent protein kinase with NtRpn3 regulatory subunit of the 26 S proteasome in Nicotiana tabacum. Plant J 33:825–840

    Article  CAS  PubMed  Google Scholar 

  • Lu SX, Hrabak EM (2002) An Arabidopsis calcium-dependent protein kinase is associated with the endoplasmic reticulum. Plant Physiol 128:1008–1021

    Google Scholar 

  • Luan S, Kudia J, Rodriguez-Concepcion M, Yalovsky S, Gruissem W (2002) Calmodulins and calcinurin B-like proteins: calcium sensors for specific signal response coupling in plants. Plant Cell [Suppl] 14:–389–400

    Google Scholar 

  • Ludwig AA, Romeis T, Jones JDG (2004) CDPK-mediated signaling pathways: specificity and cross-talk. J Exp Bot 55:181–188

    Article  CAS  PubMed  Google Scholar 

  • Martin ML, Busconi L (2000) Membrane localization of a rice calcium-dependent protein kinase (CDPK) is mediated by myristoylation and palmitoylation. Plant J 24:429–435

    Article  CAS  PubMed  Google Scholar 

  • Notredame C, Higgins D, Heringa J (2000) A novel method for multiple sequence alignments. J Mol Biol 302:205–217

    Article  CAS  PubMed  Google Scholar 

  • Osawa M, Kuwanmoto S, Izumi Y, Yap KL, Ikura M, Shibanuma T, Yokokura H, Hidaka H, Matsushima N (1999) Evidence for calmodulin inter-domain compaction in solution induced by W-7 binding. FEBS Lett 442:173–177

    Article  CAS  PubMed  Google Scholar 

  • Park BK, Hwang I (1999) Identification of hrcC, hrpF, and miaA genes of Xanthomonas campestris pv. glycines 8ra: roles in pathogenicity and inducing hypersensitive response on non-host plants. Plant Pathol 15:21–27

    Google Scholar 

  • Park JM, Park CJ, Lee SB, Ham BK, Shin R, Paek KH (2001) Overexpression of the tobacco Tsi gene encoding an EREBP/AP2-type transcription factor enhances resistance against pathogen attack and osmotic stress in tobacco. Plant Cell 13:1035–1046

    Article  CAS  PubMed  Google Scholar 

  • Prescott A, Martin C (1987) A rapid method for the quantitative assessment of levels of specific mRNAs in plants. Plant Mol Biol Rep 4:219–224

    CAS  Google Scholar 

  • Putnam-Evans CL, Harmon AC, Cormier MJ (1990) Purification and characterization of a novel calcium-dependent protein kinase from soybean. Biochemistry 29:2488–2395

    CAS  PubMed  Google Scholar 

  • Raíces M, Gargantini PR, Chinchilla D, Crespi M, Téllez-Iňón MT, Ulloa RM (2003) Regulation of CDPK isoforms during tuber development. Plant Mol Biol 52:1011–1024

    Article  PubMed  Google Scholar 

  • Reymond P, Farmer EE (1998) Jasmonate and salicylate as global signals for defense gene expression. Curr Opin Plant Biol 1:404–411

    Article  CAS  PubMed  Google Scholar 

  • Ritchie S, Gilroy S (1998) Calcium-dependent protein phosphorylation may mediate the gibberellic acid response in barley aleurone. Plant Physiol 116:765–776

    Google Scholar 

  • Romeis T, Ludwig AA, Martin R, Jones JD (2001) Calcium-dependent protein kinases play an essential role in a plant defense response. EMBO J 20:5556–5567

    Article  CAS  PubMed  Google Scholar 

  • Rutschmann F, Stalder U, Piotrowski M, Oecking C, Schaller A (2002) LeCPK1, a calcium-dependent protein kinase from tomato. Plasma membrane targeting and biochemical characterization. Plant Physiol 129:156–168

    Google Scholar 

  • Saijo Y, Hata S, Sheen J, Izui K (1997) cDNA cloning and prokaryotic expression of maize calcium-dependent protein kinases. Biochim Biophys Acta 1350:109–114

    Article  CAS  PubMed  Google Scholar 

  • Saijo Y, Hata S, Kyozuka J, Shimamoto K, Izui K (2000) Over-expression of a single Ca2+-dependent kinase confers both cold and salt/drought tolerance. Plant J 23:319–327

    Article  CAS  PubMed  Google Scholar 

  • Saitoh M, Ishikawa T, Matsushima S, Naka M, Hidaka H (1987) Selective inhibition of catalytic activity of smooth muscle myosin light chain kinase. J Biol Chem 62:7796–7801

    Google Scholar 

  • Sambrook J, Fritsch EF, Maniatis T (1989) Molecular cloning: a laboratory manual, 2nd edn. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY

    Google Scholar 

  • Sanders D, Brownlee C, Harper JF (1999) Communicating with calcium. Plant Cell 11:691–706

    Article  CAS  PubMed  Google Scholar 

  • Sanders D, Pelloux J, Brownlee C, Harper JF (2002) Calcium at the crossroads of signaling. Plant Cell [Suppl] 14:401–417

    Google Scholar 

  • Satterlee JS, Sussman MR (1998) Unusual membrane-associated protein kinases in higher plants. J Membr Biol 164:205–213

    Article  CAS  PubMed  Google Scholar 

  • Sheen J (1996) Ca2+-dependent protein kinases and stress signal transduction in plants. Science 274:1900–1902

    Article  CAS  PubMed  Google Scholar 

  • Shinozaki K, Yamaguchi-Shinozaki K (1997) Gene expression and signal transduction in water-stress response. Plant Physiol 115:327–334

    Google Scholar 

  • Snedden WA, Fromm H (1998) Calmodulin, calmodulin-related proteins and plant responses to the environment. Trends Plant Sci 3:299–304

    Article  Google Scholar 

  • Snedden WA, Fromm H (2001) Calmodulin as a versatile calcium signal transducer in plants. New Phytol 151:35–66

    Article  CAS  Google Scholar 

  • Yoon GM, Cho HS, Ha HJ, Liu JR, Pai H-S (1999) Characterization of NtCDPK1, a calcium-dependent protein kinase gene in Nicotiana tabacum, and the activity of its encoded protein. Plant Mol Biol 39:991–1001

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

This work was supported by grants from the Plant Diversity Research Center (PDRC) and the Crop Functional Genomics Center (CFGC) of the 21st Century Frontier Research Program of MOST. We thank Drs. S.S. Lee and H.S. Cho (KRIBB) for their technical advice and communications.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Doil Choi.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Chung, E., Park, J.M., Oh, SK. et al. Molecular and biochemical characterization of the Capsicum annuum calcium-dependent protein kinase 3 (CaCDPK3) gene induced by abiotic and biotic stresses. Planta 220, 286–295 (2004). https://doi.org/10.1007/s00425-004-1372-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-004-1372-9

Keywords

Navigation