Skip to main content
Log in

Localisation and characterisation of cell wall mannan polysaccharides in Arabidopsis thaliana

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Polysaccharides containing β-1,4-mannosyl residues (mannans) are abundant in the lignified secondary cell walls of gymnosperms, and are also found as major seed storage polysaccharides in some plants, such as legume species. Although they have been found in a variety of angiosperm tissues, little is known about their presence and tissue localisation in the model angiosperm, Arabidopsis thaliana (L.) Heynh. In this study, antibodies that specifically recognised mannans in competitive ELISA experiments were raised in rabbits. Using these antibodies, we showed that Golgi-rich vesicles derived from Arabidopsis callus were able to synthesise mannan polysaccharides in vitro. Immunofluorescence light microscopy and immunogold electron microscopy of Arabidopsis inflorescence stem sections revealed that the mannan polysaccharide epitopes were localised in the thickened secondary cell walls of xylem elements, xylem parenchyma and interfascicular fibres. Similarly, mannan epitopes were present in the xylem of the leaf vascular bundles. Surprisingly, the thickened epidermal cell walls of both leaves and stems also contained abundant mannan epitopes. Low levels were observed in most other cell types examined. Thus, mannans are widespread in Arabidopsis tissues, and may be of particular significance in both lignified and non-lignified thickened cell walls. Polysaccharide analysis using carbohydrate gel electrophoresis (PACE) of cell wall preparations digested with a specific mannanase showed that there is glucomannan in inflorescence stems. The findings show that Arabidopsis can be used as a model plant in studies of the synthesis and functions of mannans.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1.
Fig. 2a–g.
Fig. 3a–c.
Fig. 4a, b.
Fig. 5.

Similar content being viewed by others

Abbreviations

BSA:

bovine serum albumin

ELISA:

enzyme-linked immunosorbent assay

PACE:

polysaccharide analysis by carbohydrate gel electrophoresis

References

  • Bacic A, Harris PJ, Stone BA (1988) Structure and function of plant cell walls. In: Preiss J (ed) The biochemistry of plants — a comprehensive treatise, vol 14, Carbohydrates. Academic Press, New York, pp 297–371

  • Baldwin TC, Handford MG, Yuseff M-I, Orellana A, Dupree P (2001) Identification and characterization of GONST1, a Golgi-localized GDP-mannose transporter in Arabidopsis. Plant Cell 13:2283–2295

    Article  CAS  PubMed  Google Scholar 

  • Borner GHH, Sherrier DJ, Stevens TJ, Arkin IT, Dupree P (2002) Prediction of glycosylphosphatidylinositol-anchored proteins in Arabidopsis. A genomic analysis. Plant Physiol 129:486–499

    Article  CAS  PubMed  Google Scholar 

  • Braithwaite KL, Black GW, Hazlewood GP, Ali BRS, Gilbert HJ, (1995) A non-modular endo-β-1,4-mannanase from Pseudomonas fluorescens subspecies cellulosa. Biochem J 305:1005–1010

    CAS  PubMed  Google Scholar 

  • Brett C, Waldron K (1996) Physiology and biochemistry of plant cell walls. Chapman & Hall, London

  • Buckeridge MS, Pessoa dos Santos H, Tiné MAS (2000) Mobilisation of storage cell wall polysaccharides in seeds. Plant Physiol Biochem 38:141–156

    Article  CAS  Google Scholar 

  • Capek P, Kubachova M, Alfoldi J, Bilisics L, Liskova D, Kakoniova D (2000) Galactoglucomannan from the secondary cell wall of Picea abies L. Karst. Carbohydr Res 329:635–645

    Article  CAS  PubMed  Google Scholar 

  • Carpita NC, Defernez M, Findlay K, Wells B, Shoue DA, Catchpole G, Wilson RH, McCann MC (2001) Cell wall architecture of elongating maize coleoptile. Plant Physiol 127:551–565

    Article  CAS  PubMed  Google Scholar 

  • Cartier N, Chambat G, Joseleau JP (1988) Cell wall and extracellular galactoglucomannans from suspension-cultured Rubus fruticosus cells. Phytochemistry 27:1361–1364

    Article  CAS  Google Scholar 

  • Chaffey N, Cholewa E, Regan S, Sundberg B (2002) Secondary xylem development in Arabidopsis: a model for wood formation. Physiol Plant 114:594–600

    Article  CAS  PubMed  Google Scholar 

  • Chen L, Carpita N, Reiter W-D, Wilson R, Jeffries C, McCann MC (1998) A rapid method to screen for cell-wall mutants using discriminant analysis of Fourier transform infrared spectra. Plant J 16:385–392

    Article  CAS  PubMed  Google Scholar 

  • Dalessandro G, Piro G, Northcote DH (1988) A membrane-bound enzyme complex synthesising glucan and glucomannan in pine tissues. Planta 175:60–70

    CAS  Google Scholar 

  • Eda S, Akiyama Y, Kato K, Ishizu A, Nakano J (1985) A galactoglucomannan from cell walls of suspension-cultured tobacco (Nicotiana tabacum) cells. Carbohydr Res 137:173–181

    Article  CAS  Google Scholar 

  • Freshour G, Clay RP, Fuller MS, Albersheim P, Darvill AG, Hahn MG (1996) Developmental and tissue-specific structural alterations of the cell-wall polysaccharides of Arabidopsis thaliana roots. Plant Physiol 110:1413–1429

    CAS  Google Scholar 

  • Fry SC (2000) The growing plant cell wall: chemical and metabolic analysis. Blackburn Press, Caldwell, NJ

    Google Scholar 

  • Goubet F, Jackson P, Deery M, Dupree P (2002) Polysaccharide analysis using carbohydrate gel electrophoresis (PACE): a method to study plant cell wall polysaccharides and polysaccharide hydrolases. Anal Biochem 300:53–68

    Article  CAS  PubMed  Google Scholar 

  • Ha M-A, MackKinnon IM, Šturcová A, Apperley DC, McCann MC, Turner SR, Jarvis MC (2002) Structure of cellulose-deficient secondary cell walls from the irx3 mutant of Arabidopsis thaliana. Phytochemistry 61:7–14

    Article  CAS  PubMed  Google Scholar 

  • His I, Driouich A, Nicol F, Jauneau A, Höfte H (2001) Altered pectin composition in primary cell walls of korrigan, a dwarf mutant of Arabidopsis deficient in a membrane-bound endo-1,4-β-glucanase. Planta 212:348–358

    CAS  PubMed  Google Scholar 

  • Hogg D, Pell G, Dupree P, Goubet F, Martin-Orue SM, Armand S, Gilbert HJ (2003) The modular architecture of Cellvibrio japonicus mannanases in glycoside hydrolase families 5 and 26 point to differences in their role in mannan degradation. Biochem J 371:1027–1043

    Article  CAS  PubMed  Google Scholar 

  • Hosoo Y, Yoshida M, Imai T, Okuyama T (2002) Diurnal difference in the amount of immunogold-labeled glucomannans detected with field emission scanning electron microscopy at the innermost surface of developing secondary walls of differentiating conifer tracheids. Planta 215:1006–1012

    Article  CAS  PubMed  Google Scholar 

  • Jacobs A, Lundqvist J, Stålbrand H, Tjerneld F, Dahlman O (2002) Characterization of water-soluble hemicelluloses from spruce and aspen employing SEC/MALDI mass spectroscopy. Carbohydr Res 337:711–717

    Article  CAS  PubMed  Google Scholar 

  • Lerouxel O, Choo TS, Séveno M, Usadel B, Faye L, Lerouge P, Pauly M (2002) Rapid structural phenotyping of plant cell wall mutants by enzymatic oligosaccharide fingerprinting. Plant Physiol 130:1754–1763

    Article  CAS  PubMed  Google Scholar 

  • Lundqvist J, Teleman A, Junel L, Zacchi G, Dahlman O, Tjerneld F, Stalbrand H (2002) Isolation and characterization of galactoglucomannan from spruce (Picea abies). Carbohydr Polym 48:29–39

    Article  CAS  Google Scholar 

  • Maeda Y, Awano T, Takabe K, Fujita M (2000) Immunolocalization of glucomannans in the cell wall of differentiating tracheids in Chamaecyparis obtusa. Protoplasma 213:148–156

    CAS  Google Scholar 

  • Matheson MK (1990) Mannose-based polysaccharides. Methods Plant Biochem 12:371–413

    Google Scholar 

  • McCann MC, Chen L, Roberts K, Kemsley EK, Sene C, Carpita NC, Stacey NJ, Wilson RH (1997) Infrared microspectroscopy: sampling heterogeneity in plant cell wall composition and architecture. Physiol Plant 100:729–738

    Article  CAS  Google Scholar 

  • McCartney L, Ormerod AP, Gidley M, Knox JP (2000) Temporal and spatial regulation of pectic (1→4)-β-d-galactan in cell walls of developing pea cotyledons: implications for mechanical properties. Plant J 22:105–113

    CAS  PubMed  Google Scholar 

  • Meier H, Reid JSG (1982) Reserve polysaccharides other than starch. In: Loewus FA, Tanner W (eds) Encyclopaedia of plant physiology, NS, vol 13A. Springer, Berlin Heidelberg New York, pp 418–471

  • Muñoz P, Norambuena L, Orellana A (1996) Evidence for a UDP-glucose transporter in Golgi apparatus-derived vesicles from pea and its possible role in polysaccharide biosynthesis. Plant Physiol 112:1585–1594

    PubMed  Google Scholar 

  • Peng L, Hocart CH, Redmond JW, Williamson RE (2000) Fractionation of carbohydrates in Arabidopsis root cell walls shows that three radial swelling loci are specifically involved in cellulose production. Planta 211:406–414

    Article  CAS  PubMed  Google Scholar 

  • Perrin R, Wilkerson C, Keegstra K (2001) Golgi enzymes that synthesize plant cell wall polysaccharides: finding and evaluating candidates in the genomic era. Plant Mol Biol 47:115–130

    Article  CAS  PubMed  Google Scholar 

  • Pettolino FA, Hoogenraad NJ, Ferguson C, Bacic A, Johnson E, Stone BA (2001) A (1→4)-β-mannan-specific monoclonal antibody and its use in the immunocytochemical location of galactomannans. Planta 214:235–242

    CAS  PubMed  Google Scholar 

  • Piro G, Zuppa A, Dalessandro G, Northcote DH (1993) Glucomannan synthesis in pea epicotyls: the mannose and glucose transferases. Planta 190:206–220

    CAS  PubMed  Google Scholar 

  • Prime TA, Sherrier JD, Mahon P, Packman LC, Dupree P (2000) A proteomic analysis of organelles from Arabidopsis thaliana. Electrophoresis 21:3488–3499

    Article  CAS  PubMed  Google Scholar 

  • Puhlmann J, Bucheli E, Swain MJ, Dunning N, Albersheim P, Darvill AG, Hahn MG (1994) Generation of monoclonal-antibodies against plant cell-wall polysaccharides. 1. Characterization of a monoclonal-antibody to a terminal alpha-(1→2)-linked fucosyl-containing epitope. Plant Physiol 104:699–710

    Article  CAS  PubMed  Google Scholar 

  • Reid JSG, Edwards M, Gidley MJ, Clark AH (1995) Enzyme specificity in galactomannan biosynthesis. Planta 195:489–495

    CAS  Google Scholar 

  • Reiter WD (2002) Biosynthesis and properties of the plant cell wall. Curr Opin Plant Biol 5:536–542

    Article  CAS  PubMed  Google Scholar 

  • Reiter W-D, Chapple C, Somerville CR (1997) Mutants of Arabidopsis thaliana with altered cell wall polysaccharide composition. Plant J 12:335–345

    CAS  PubMed  Google Scholar 

  • Richmond TA, Somerville CR (2001) Integrative approaches to determining Csl function. Plant Mol Biol 47:131–143

    CAS  PubMed  Google Scholar 

  • Samuels AL, Rensing KH, Douglas CJ, Mansfield SD, Dharmawardhana DP, Ellis BE (2002) Cellular machinery of wood production: differentiation of secondary xylem in Pinus contorta var. latifolia. Planta 216:72–82

    Article  CAS  PubMed  Google Scholar 

  • Schroder R, Nicolas P, Vincent SJF, Fischer M, Reymond S, Redgwell RJ (2001) Purification and characterisation of a galactoglucomannan from kiwifruit (Actinidia deliciosa). Carbohydr Res 331:291–306

    Article  CAS  PubMed  Google Scholar 

  • Sherrier JD, Prime TA, Dupree P (1999) Glycosylphosphatidylinositol-anchored cell-surface protein from Arabidopsis. Electrophoresis 20:2027–2035

    Article  CAS  PubMed  Google Scholar 

  • Sims IM, Craik DJ, Bacic A (1997) Structural characterization of galactoglucomannan secreted by suspension-cultured cells of Nicotiana plumbaginifolia. Carbohydr Res 303:79–92

    Article  CAS  PubMed  Google Scholar 

  • Turner SR, Somerville CR (1997) Collapsed xylem phenotype of Arabidopsis identifies mutants deficient in cellulose deposition in the secondary cell wall. Plant Cell 9:689–701

    CAS  PubMed  Google Scholar 

  • Turner SR, Taylor N, Jones L (2001) Mutations of the secondary cell wall. Plant Mol Biol 47:209–219

    Article  CAS  PubMed  Google Scholar 

  • Wee EG-T, Sherrier DJ, Prime TA, Dupree P (1998) Targeting of active sialyltransferase to the plant Golgi apparatus. Plant Cell 10:1759–1768

    Article  CAS  PubMed  Google Scholar 

  • Whitney SEC, Brigham JE, Darke AH, Reid JSG, Gidley MJ (1998) Structural aspects of the interaction of mannan-based polysaccharides with bacterial cellulose. Carbohydr Res 307:299–309

    CAS  Google Scholar 

  • Willats WGT, Marcus SE, Knox JP (1998) Generation of a monoclonal antibody specific to (1 →5)-alpha-l-arabinan. Carbohydr Res 308:149–152

    CAS  PubMed  Google Scholar 

  • Willats WGT, Gilmartin PM, Mikkelsen JD, Knox JP (1999) Cell wall antibodies without immunization: generation and use of de-esterified homogalacturonan block-specific antibodies from a naive phage display library. Plant J 18:57–65

    Article  CAS  PubMed  Google Scholar 

  • Willats WGT, Steele-King CG, McCartney L, Orfila C, Marcus SE, Knox JP (2000) Making and using antibody probes to study plant cell walls. Plant Physiol Biochem 38:27–36

    Article  CAS  Google Scholar 

  • Willats WGT, Orfila C, Limberg G, Buchholt HC, Van Alebeek G-JWM, Voragen AGJ, Marcus SE, Christensens TMIE, Mikkelsen JD, Murray BS, Knox JP (2001) Modulation of the degree and pattern of methyl-esterification of pectic homogalacturonan in plant cell walls. J Biol Chem 276:19404–19413

    Article  CAS  PubMed  Google Scholar 

  • Wulff C, Norambuena L, Orellana A (2000) GDP-fucose uptake into the Golgi apparatus during xyloglucan biosynthesis requires the activity of a transporter-like protein other than the UDP-glucose transporter. Plant Physiol 122:867–877

    Article  CAS  PubMed  Google Scholar 

  • Zablackis E, Huang J, Müller B, Darvill AG, Albersheim P (1995) Characterization of the cell-wall polysaccharides of Arabidopsis thaliana leaves. Plant Physiol 107:1129–1138

    Article  CAS  PubMed  Google Scholar 

  • Zhang GF, Staehelin AL (1992) Functional compartmentation of the Golgi apparatus plants cells. Plant Physiol 99:1070–1083

    CAS  Google Scholar 

Download references

Acknowledgements

M.G. Handford, T.C. Baldwin, F. Goubet and T.A. Prime contributed equally to this work. Dan Hill, Janine Sherrier and Jeremy Griggs are thanked for help with the microscopy experiments. We thank Paul Knox for advice on generation and characterisation of antibodies, and Ulrike Rink for help in the initial stages of the project. We are very grateful to Harry Gilbert for generous donation of mannanase enzymes. This work was supported by the BBSRC and The University of Cambridge Broodbank Fund.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Paul Dupree.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Handford, M.G., Baldwin, T.C., Goubet, F. et al. Localisation and characterisation of cell wall mannan polysaccharides in Arabidopsis thaliana . Planta 218, 27–36 (2003). https://doi.org/10.1007/s00425-003-1073-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00425-003-1073-9

Keywords

Navigation