Skip to main content
Log in

Mechanisms underlying spontaneous phasic contractions and sympathetic control of smooth muscle in the rat caudal epididymis

  • Organ physiology
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

Here we investigate mechanisms underlying spontaneous phasic contractions (SPCs) and sympathetic control of contractility in the rat epididymis, a long tubular duct involved in transportation and maturation of sperm. Longitudinal contractions of short segments (~ 1.5 mm) of rat proximal and distal caudal epididymal duct were measured + / − nerve stimulation. The extent of sympathetic innervation of these duct regions was determined by immunohistochemistry. Proximal caudal duct segments (150–300 μm dia.) exhibited SPCs, while distal segments (350–500 μm) were quiescent in ~ 80% of preparations. SPC amplitude and frequency were reduced by the L-type voltage-dependent Ca2+ channel (LVDCC) blocker nifedipine (1 μM), with the T-type voltage-dependent Ca2+ channel (TVDCC) blocker ML218 (1 μM) specifically decreasing SPC frequency. SPCs were inhibited upon blockade of the SR/ER Ca2+-ATPase (CPA 10 μM). SPCs were also inhibited by caffeine (1 μM), 2-APB (100 μM), niflumic acid (100 μM), or by lowering extracellular [Cl] from 134.4 to 12.4 mM but not by ryanodine (25 μM) or tetracaine (100 μM). Electrical field stimulation (EFS) at 2 Hz for 60 s caused a sustained α1-adrenoceptor-sensitive contraction in distal segments and enhanced and/or induced α2-adrenoceptor-sensitive oscillatory phasic contractions in proximal and distal segments, the latter mimicked by application of the α2-adrenoceptor agonist clonidine. We hypothesise that SPCs in the proximal cauda are triggered by pacemaker mechanisms involving rhythmic IP3 receptor–operated SR/ER store Ca2+ release and resultant activation of CaCC with TVDCCs and possibly LVDCCs subserving in this process. Sympathetic nerve-released noradrenaline induces α2-adrenoceptor-mediated phasic contractions in the proximal and distal cauda. These findings provide new pharmacological targets for male infertility and contraception.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

Data availability

Data is available on demand from Professor Hikaru Hashitani in whose laboratory this research was undertaken.

Abbreviations

2-APB: :

2-Aminoethoxydiphenyl borate

α-SMA:

α-Smooth muscle actin

BSS:

Buffered saline solution

CaCC:

Calcium-activated chloride channels

CPA:

Cyclopiazonic acid

DMSO:

Dimethyl sulphoxide

EFS:

Electrical field stimulation

ET-1:

Endothelin 1

LVDCC:

L-type voltage-dependent Ca2+ channel

IgG:

Immunoglobulin G

SPCs:

Spontaneous phasic contractions

SR/ER:

Sarcoendoplasmic reticulum

TH:

Tyrosine hydroxylase

TVDCC:

T-type voltage-dependent Ca2+ channel

References

  1. Robaire B, Hinton BT, Orgebin-Crist M-C (2006) The epididymis. In: Neill JD (ed) Knobil and Neill’s physiology of reproduction-, 3rd edn. Elsevier, United States, pp 1071–1148

    Chapter  Google Scholar 

  2. Takano H, Abe K, Ito T (1981) Changes in the mouse epididymis after ligation of the ductuli efferentes or proximal epididymal duct: qualitative and quantitative histological studies (author’s transl). Kaibogaku Zasshi 56:79–90

    CAS  PubMed  Google Scholar 

  3. Turner TT, Gleavy JL, Harris JM (1990) Fluid movement in the lumen of the rat epididymis: effect of vasectomy and subsequent vasovasostomy. J Androl 11:422–428

    CAS  PubMed  Google Scholar 

  4. Von L, Neuhaeuser G (1964) Morphometric analysis of the human epididymis. Z Anat Entwicklungsgesch 124:126–152

    Article  Google Scholar 

  5. Dacheux JL, Dacheux F (2014) New insights into epididymal function in relation to sperm maturation. Reproduction 147:R27-42. https://doi.org/10.1530/REP-13-0420

    Article  CAS  PubMed  Google Scholar 

  6. Skerget S, Rosenow MA, Petritis K, Karr TL (2015) Sperm proteome maturation in the mouse epididymis. PLoS ONE 10:e0140650. https://doi.org/10.1371/journal.pone.0140650

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  7. Crabo B (1965) Studies on the composition of epididymal content in bulls and boars. Acta Vet Scand 22:1–94

    Google Scholar 

  8. Elfgen V, Mietens A, Mewe M, Hau T, Middendorff R (2018) Contractility of the epididymal duct: function, regulation and potential drug effects. Reproduction 156:R125–R141. https://doi.org/10.1530/REP-17-0754

    Article  CAS  PubMed  Google Scholar 

  9. Johnson AL, Howards SS (1975) Intratubular hydrostatic pressure in testis and epididymis before and after vasectomy. Am J Physiol 228:556–564. https://doi.org/10.1152/ajplegacy.1975.228.2.556

    Article  CAS  PubMed  Google Scholar 

  10. Mewe M, Bauer CK, Muller D, Middendorff R (2006) Regulation of spontaneous contractile activity in the bovine epididymal duct by cyclic guanosine 5’-monophosphate-dependent pathways. Endocrinology 147:2051–2062. https://doi.org/10.1210/en.2005-1324

    Article  CAS  PubMed  Google Scholar 

  11. Baumgarten HG, Falck B, Holstein AF, Owman C, Owman T (1968) Adrenergic innervation of the human testis, epididymis, ductus deferens and prostate: a fluorescence microscopic and fluorimetric study. Z Zellforsch Mikrosk Anat 90:81–95

    Article  CAS  Google Scholar 

  12. Holstein AF (1969) Morphologische studien am nebenhoden des menschen. Zwanglose Abhandlungen aus dem Gebiet der Normalen und Pathologischen Anatomie 20:1-91

  13. Jaakkola UM (1983) Regional variations in transport of the luminal contents of the rat epididymis in vivo. J Reprod Fertil 68:465–470

    Article  CAS  Google Scholar 

  14. Mewe M, Bauer CK, Schwarz JR, Middendorff R (2006) Mechanisms regulating spontaneous contractions in the bovine epididymal duct. Biol Reprod 75:651–659. https://doi.org/10.1095/biolreprod.106.054577

    Article  CAS  PubMed  Google Scholar 

  15. Talo A, Jaakkola UM, Markkula-Viitanen M (1979) Spontaneous electrical activity of the rat epididymis in vitro. J Reprod Fertil 57:423–429

    Article  CAS  Google Scholar 

  16. Hodson N (1970) The nerves of the testis, epididymis and scrotum. In: Gomes WR, Vandemark NL (eds) Johnson AD. Academic Press, New York, New York, pp 47–99

    Google Scholar 

  17. Mitchell GA (1935) The innervation of the kidney, ureter, testicle and epididymis. J Anat 70(10–32):15

    PubMed  Google Scholar 

  18. Ricker DD (1998) The autonomic innervation of the epididymis: its effects on epididymal function and fertility. J Androl 19:1–4

    CAS  PubMed  Google Scholar 

  19. Hib J (1976) Effects of autonomic drugs on epididymal contractions. Fertil Steril 27:951–956

    Article  CAS  Google Scholar 

  20. El-Badawi A, Schenk EA (1967) The distribution of cholinergic and adrenergic nerves in the mammalian epididymis: a comparative histochemical study. Am J Anat 121:1–14. https://doi.org/10.1002/aja.1001210102

    Article  CAS  PubMed  Google Scholar 

  21. Grundy D (2015) Principles and standards for reporting animal experiments in the journal of physiology and experimental physiology. J Physiol 593:2547–2549. https://doi.org/10.1113/JP270818

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Neild TO (1989) Measurement of arteriole diameter changes by analysis of television images. Blood Vessels 26:48–52

    CAS  PubMed  Google Scholar 

  23. Hashitani H, Nguyen MJ, Noda H, Mitsui R, Higashi R, Ohta K, Nakamura KI, Lang RJ (2017) Interstitial cell modulation of pyeloureteric peristalsis in the mouse renal pelvis examined using FIBSEM tomography and calcium indicators. Pflugers Arch 469:797–813. https://doi.org/10.1007/s00424-016-1930-6

    Article  CAS  PubMed  Google Scholar 

  24. Brooks DE (1973) Epididymal and testicular temperature in the unrestrained conscious rat. JReprod Fertil 35:157–160. https://doi.org/10.1530/jrf.0.0350157

    Article  CAS  Google Scholar 

  25. Bedford JM (1991) Effects of elevated temperature on the epididymis and testis: experimental studies. Adv Exp Med Biol 286:19–32. https://doi.org/10.1007/978-1-4684-5913-5_3

    Article  CAS  PubMed  Google Scholar 

  26. Acierno LJ, Worrell LT (2004) Albrecht Fleckenstein: father of calcium antagonism. Clin Cardiol 27:710–711. https://doi.org/10.1002/clc.4960271213

    Article  PubMed  Google Scholar 

  27. Fleckenstein A (1983) History of calcium antagonists. Circ Res 52:I3-16

    CAS  PubMed  Google Scholar 

  28. Xiang Z, Thompson AD, Brogan JT, Schulte ML, Melancon BJ, Mi D, Lewis LM, Zou B, Yang L, Morrison R, Santomango T, Byers F, Brewer K, Aldrich JS, Yu H, Dawson ES, Li M, McManus O, Jones CK, Daniels JS, Hopkins CR, Xie XS, Conn PJ, Weaver CD, Lindsley CW (2011) The discovery and characterization of ML218: a novel, centrally active T-type calcium channel inhibitor with robust effects in STN neurons and in a rodent model of Parkinson’s disease. ACS Chem Neurosci 2:730–742. https://doi.org/10.1021/cn200090z

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. Hashitani H, van Helden DF, Suzuki H (1996) Properties of spontaneous depolarizations in circular smooth muscle cells of rabbit urethra. Br J Pharmacol 118:1627–1632

    Article  CAS  Google Scholar 

  30. Nilsson H, Aalkjaer C (2003) Vasomotion: mechanisms and physiological importance. Mol Interv 3:79–89

    Article  CAS  Google Scholar 

  31. Van Helden DF (1993) Pacemaker potentials in lymphatic smooth muscle of the guinea-pig mesentery. J Physiol 471:465–479

    Article  Google Scholar 

  32. van Helden DF, Imtiaz MS, Nurgaliyeva K, von der Weid P, Dosen PJ (2000) Role of calcium stores and membrane voltage in the generation of slow wave action potentials in guinea-pig gastric pylorus. J Physiol 524:245–265

    Article  Google Scholar 

  33. Seidler NW, Jona I, Vegh M, Martonosi A (1989) Cyclopiazonic acid is a specific inhibitor of the Ca2+-ATPase of sarcoplasmic reticulum. J Biol Chem 264:17816–17823

    Article  CAS  Google Scholar 

  34. Drumm BT, Large RJ, Hollywood MA, Thornbury KD, Baker SA, Harvey BJ, McHale NG, Sergeant GP (2015) The role of Ca(2+) influx in spontaneous Ca(2+) wave propagation in interstitial cells of Cajal from the rabbit urethra. J Physiol 593:3333–3350. https://doi.org/10.1113/JP270883

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Parker I, Ivorra I (1991) Caffeine inhibits inositol trisphosphate-mediated liberation of intracellular calcium in Xenopus oocytes. J Physiol 433:229–240. https://doi.org/10.1113/jphysiol.1991.sp018423

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. Maruyama T, Kanaji T, Nakade S, Kanno T, Mikoshiba K (1997) 2APB, 2-aminoethoxydiphenyl borate, a membrane-penetrable modulator of Ins(1,4,5)P3-induced Ca2+ release. J Biochem 122:498–505. https://doi.org/10.1093/oxfordjournals.jbchem.a021780

    Article  CAS  PubMed  Google Scholar 

  37. Huang F, Rock JR, Harfe BD, Cheng T, Huang X, Jan YN, Jan LY (2009) Studies on expression and function of the TMEM16A calcium-activated chloride channel. Proc Natl Acad Sci U S A 106:21413–21418. https://doi.org/10.1073/pnas.0911935106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Sanders KM, Zhu MH, Britton F, Koh SD, Ward SM (2012) Anoctamins and gastrointestinal smooth muscle excitability. Exp Physiol 97:200–206. https://doi.org/10.1113/expphysiol.2011.058248

    Article  CAS  PubMed  Google Scholar 

  39. da Gao Y, Zhang BL, Leung MC, Au SC, Wong PY, Shum WW (2016) Coupling of TRPV6 and TMEM16A in epithelial principal cells of the rat epididymis. J Gen Physiol 148:161–182. https://doi.org/10.1085/jgp.201611626

    Article  CAS  PubMed Central  Google Scholar 

  40. Evans RJ, Surprenant A (1992) Vasoconstriction of guinea-pig submucosal arterioles following sympathetic nerve stimulation is mediated by the release of ATP. Br J Pharmacol 106:242–249. https://doi.org/10.1111/j.1476-5381.1992.tb14323.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Venkova K, Krier J (1993) Stimulation of lumbar sympathetic nerves evokes contractions of cat colon circular muscle mediated by ATP and noradrenaline. Br J Pharmacol 110:1260–1270. https://doi.org/10.1111/j.1476-5381.1993.tb13951.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  42. Ventura S, Pennefather JN (1991) Sympathetic co-transmission to the cauda epididymis of the rat: characterization of postjunctional adrenoceptors and purinoceptors. Br J Pharmacol 102:540–544. https://doi.org/10.1111/j.1476-5381.1991.tb12207.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Wiszniewska B, Kurzawa R, Ciechanowicz A, Machalinski B (1997) Inducible nitric oxide synthase in the epithelial epididymal cells of the rat. Reprod Fertil Dev 9:789–794. https://doi.org/10.1071/r97063

    Article  CAS  PubMed  Google Scholar 

  44. von der Weid PY, Zhao J, Van Helden DF (2001) Nitric oxide decreases pacemaker activity in lymphatic vessels of guinea pig mesentery. Am J Physiol Heart Circ Physiol 280:H2707-2716. https://doi.org/10.1152/ajpheart.2001.280.6.H2707

    Article  PubMed  Google Scholar 

  45. Zhang H, Walcott GP, Rogers JM (2018) Effects of gadolinium on cardiac mechanosensitivity in whole isolated swine hearts. Sci Rep 8:10506. https://doi.org/10.1038/s41598-018-28743-w

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. von der Weid P-Y (2019) Lymphatic vessel pumping. In: Hashitani H, Lang RJ (eds) Smooth muscle spontaneous activity, vol 1. Advances in experimental medicine and biology. Springer, Singapore, pp 357–377

    Chapter  Google Scholar 

  47. Warner TD, Giuliano F, Vojnovic I, Bukasa A, Mitchell JA, Vane JR (1999) Nonsteroid drug selectivities for cyclo-oxygenase-1 rather than cyclo-oxygenase-2 are associated with human gastrointestinal toxicity: a full in vitro analysis. Proc Natl Acad Sci U S A 96:7563–7568. https://doi.org/10.1073/pnas.96.13.7563

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  48. Liu LW, Thuneberg L, Huizinga JD (1995) Cyclopiazonic acid, inhibiting the endoplasmic reticulum calcium pump, reduces the canine colonic pacemaker frequency. J Pharmacol Exp Ther 275:1058–1068

    CAS  PubMed  Google Scholar 

  49. Caputo A, Caci E, Ferrera L, Pedemonte N, Barsanti C, Sondo E, Pfeffer U, Ravazzolo R, Zegarra-Moran O, Galietta LJ (2008) TMEM16A, a membrane protein associated with calcium-dependent chloride channel activity. Science 322:590–594. https://doi.org/10.1126/science.1163518

    Article  CAS  PubMed  Google Scholar 

  50. Schroeder BC, Cheng T, Jan YN, Jan LY (2008) Expression cloning of TMEM16A as a calcium-activated chloride channel subunit. Cell 134:1019–1029. https://doi.org/10.1016/j.cell.2008.09.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  51. Yang YD, Cho H, Koo JY, Tak MH, Cho Y, Shim WS, Park SP, Lee J, Lee B, Kim BM, Raouf R, Shin YK, Oh U (2008) TMEM16A confers receptor-activated calcium-dependent chloride conductance. Nature 455:1210–1215. https://doi.org/10.1038/nature07313

    Article  CAS  PubMed  Google Scholar 

  52. Gomez-Pinilla PJ, Gibbons SJ, Bardsley MR, Lorincz A, Pozo MJ, Pasricha PJ, Van de Rijn M, West RB, Sarr MG, Kendrick ML, Cima RR, Dozois EJ, Larson DW, Ordog T, Farrugia G (2009) Ano1 is a selective marker of interstitial cells of Cajal in the human and mouse gastrointestinal tract. Am J Physiol Gastrointest Liver Physiol 296:G1370-1381. https://doi.org/10.1152/ajpgi.00074.2009

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  53. Hwang SJ, Blair PJ, Britton FC, O’Driscoll KE, Hennig G, Bayguinov YR, Rock JR, Harfe BD, Sanders KM, Ward SM (2009) Expression of anoctamin 1/TMEM16A by interstitial cells of Cajal is fundamental for slow wave activity in gastrointestinal muscles. J Physiol 587:4887–4904. https://doi.org/10.1113/jphysiol.2009.176198

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  54. Zawieja SD, Castorena JA, Gui P, Li M, Bulley SA, Jaggar JH, Rock JR, Davis MJ (2019) Ano1 mediates pressure-sensitive contraction frequency changes in mouse lymphatic collecting vessels. J Gen Physiol 151:532–554. https://doi.org/10.1085/jgp.201812294

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Matchkov VV, Aalkjaer C, Nilsson H (2004) A cyclic GMP-dependent calcium-activated chloride current in smooth-muscle cells from rat mesenteric resistance arteries. J Gen Physiol 123:121–134. https://doi.org/10.1085/jgp.200308972

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  56. Ganapathi SB, Wei SG, Zaremba A, Lamb FS, Shears SB (2013) Functional regulation of ClC-3 in the migration of vascular smooth muscle cells. Hypertension 61:174–179. https://doi.org/10.1161/HYPERTENSIONAHA.112.194209

    Article  CAS  PubMed  Google Scholar 

  57. Yamada S, Suzuki Y, Bernotiene E, Giles WR, Imaizumi Y, Yamamura H (2021) Swelling-activated ClC-3 activity regulates prostaglandin E2 release in human OUMS-27 chondrocytes. Biochem Biophys Res Commun 537:29–35. https://doi.org/10.1016/j.bbrc.2020.12.068

    Article  CAS  PubMed  Google Scholar 

  58. Strogatz SH, Stewart I (1993) Coupled oscillators and biological synchronization. Scientific Am 269:102–109

    Article  CAS  Google Scholar 

  59. Imtiaz MS, Zhao J, Hosaka K, von der Weid PY, Crowe M, van Helden DF (2007) Pacemaking through Ca2+ stores interacting as coupled oscillators via membrane depolarization. Biophys J 92:3843–3861

    Article  CAS  Google Scholar 

  60. van Helden DF, Imtiaz MS (2003) Ca2+ phase waves: a basis for cellular pacemaking and long-range synchronicity in the guinea-pig gastric pylorus. J Physiol 548(1):271–296

    Article  Google Scholar 

  61. Jaakkola UM, Talo A (1983) Movements of the luminal contents in two different regions of the caput epididymidis of the rat in vitro. J Physiol 336:453–463

    Article  CAS  Google Scholar 

  62. Chaturapanich G, Maythaarttaphong S, Verawatnapakul V, Pholpramool C (2002) Mediation of contraction in rat cauda epididymidis by alpha-adrenoceptors. Reproduction 124:887–892

    Article  CAS  Google Scholar 

  63. Pacini ESA, Castilho ACS, Hebeler-Barbosa F, Pupo AS, Kiguti LRA (2018) Contraction of rat cauda epididymis smooth muscle to alpha1-adrenoceptor activation is mediated by alpha1A-adrenoceptors. J Pharmacol Exp Ther 366:21–28. https://doi.org/10.1124/jpet.117.246710

    Article  CAS  PubMed  Google Scholar 

  64. Queiroz DB, Mendes FR, Porto CS, Avellar MC (2002) Alpha1-adrenoceptor subtypes in rat epididymis and the effects of sexual maturation. Biol Reprod 66:508–515. https://doi.org/10.1095/biolreprod66.2.508

    Article  CAS  PubMed  Google Scholar 

  65. da Silva Junior ED, de Souza BP, Vilela VV, Rodrigues JQ, Nichi M, de Agostini Losano JD, Dalmazzo A, Barnabe VH, Jurkiewicz A, Jurkiewicz NH (2014) Epididymal contraction and sperm parameters are affected by clonidine. Andrology 2:955–966. https://doi.org/10.1111/andr.283

    Article  CAS  PubMed  Google Scholar 

  66. Ventura S, Pennefather JN (1994) Alpha 2-adrenoceptor binding sites vary along the length of the male reproductive tract: a possible basis for the regional variation in response to field stimulation. Eur J Pharmacol 254:167–173. https://doi.org/10.1016/0014-2999(94)90384-0

    Article  CAS  PubMed  Google Scholar 

  67. Gesek FA (1996) Alpha 2-adrenergic receptors activate phospholipase C in renal epithelial cells. Mol Pharmacol 50:407–414

    CAS  PubMed  Google Scholar 

  68. Haynes JM, Hill SJ (1996) Alpha-adrenoceptor mediated responses of the cauda epididymis of the guinea-pig. Br J Pharmacol 119:1203–1210. https://doi.org/10.1111/j.1476-5381.1996.tb16023.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  69. Berridge MJ, Irvine RF (1984) Inositol trisphosphate, a novel second messenger in cellular signal transduction. Nature 312:315–321. https://doi.org/10.1038/312315a0

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

The present study was partly supported by Grant-in-Aid for Scientific Research (C) (No. 19K08426) from Japan Society for Promotion of the Science (JSPS) to R.M.

Author information

Authors and Affiliations

Authors

Contributions

Conceptualization: HH, DVH; methodology: HH, RL, RM, DVH; formal analysis and investigation: HH, RM, DVH; writing—review and editing: HH, RL, RM, DVH.

Corresponding author

Correspondence to Dirk F. van Helden.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interests.

Ethics approval

Experiments were carried out in accordance with the Care and Use of Animals in the Field of Physiological Sciences set out by the Physiological Society of Japan (2015).

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mitsui, R., Hashitani, H., Lang, R.J. et al. Mechanisms underlying spontaneous phasic contractions and sympathetic control of smooth muscle in the rat caudal epididymis. Pflugers Arch - Eur J Physiol 473, 1925–1938 (2021). https://doi.org/10.1007/s00424-021-02609-z

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-021-02609-z

Keywords

Navigation