Skip to main content
Log in

Energy metabolism in intensively exercising calf muscle under a simulated orthostasis

  • Skeletal Muscle
  • Published:
Pflügers Archiv - European Journal of Physiology Aims and scope Submit manuscript

Abstract

We conducted non-invasive methods to investigate the mechanisms how an orthostasis improves fatigue resistance in human calf muscle during intense exercise. Eleven healthy volunteers performed two series of ten intervals of maximum dynamic exercise (15 s) and recovery (45 s) at almost horizontal body position under both, control conditions (CON) and lower body negative pressure (LBNP, −40 mbar). As from the second work interval, LBNP significantly improved fatigue resistance shown as a lower reduction in work and in contraction velocity (P < 0.01). During each work interval, EMG showed a small increase in amplitude (P < 0.01) and a steep drop by 20% in median frequency (P < 0.01). Under LBNP, both EMG parameters completely recovered during subsequent rest, whereas under CON recovery was incomplete (P < 0.01). During the first work interval, consumption of phosphocreatine (PCr) was almost the same for both conditions. In periods of recovery under LBNP, resynthesis of PCr and inorganic phosphate were significantly faster. PCr reached 10 to 20% higher levels (P < 0.01). LBNP caused an initial increase in intracellular pH (0.08 U (P < 0.01)). The subsequent time courses of pH were similar for CON and LBNP. During work, pH steeply increased by about 0.3 U. During subsequent recovery, pH dropped to values between 6.3 and 6.5. LBNP caused significantly higher levels of total haemoglobin and oxy-haemoglobin (P < 0.05). A simulated orthostasis increased fatigue resistance during high intense interval exercise because of a faster PCr resynthesis and may be because of improvements in the maintenance of motoneuronal activity.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Arnold DL, Matthews PM, Radda GK (1984) Metabolic recovery after exercise and the assessment of mitochondrial function in vivo in human skeletal muscle by means of 31P NMR. Magn Reson Med 1:307–315

    Article  PubMed  CAS  Google Scholar 

  2. Baerwalde S, Zange J, Müller K, Maassen N (1999) High-energy-phosphates measured by 31P-MRS during LBNP in exercising human leg muscle. J Grav Physiol 6:37–38

    Google Scholar 

  3. Binzoni T, Quaresima V, Ferrari M, Hiltbrand E, Cerretelli P (2000) Human calf microvascular compliance measured by near-infrared spectroscopy. J Appl Physiol 88:369–372

    PubMed  CAS  Google Scholar 

  4. Caffier G, Rehfeldt H, Kramer H, Mucke R (1992) Fatigue during sustained maximal voluntary contraction of different muscles in humans: dependence on fibre type and body posture. Eur J Appl Physiol 64:237–243

    Article  CAS  Google Scholar 

  5. Chance B, Leigh JS, Kent J, McCully K (1986) Metabolic control principles and 31P NMR. Fed Proc 45:2915–2920

    PubMed  CAS  Google Scholar 

  6. Chance B, Leigh JSJ, Kent J, McCully K, Nioka S, Clark BJ, Maris JM, Graham T (1986) Multiple controls of oxidative metabolism in living tissues as studied by phosphorus magnetic resonance. Proc Natl Acad Sci USA 83:9458–9462

    Article  PubMed  CAS  Google Scholar 

  7. Christ M, Zange J, Janson CP, Müller K, Kuklinski P, Schmidt BM, Tillmann HC, Gerzer R, Wehling M (2001) Hypoxia modulates rapid effects of aldosterone on oxidative metabolism in human calf muscle. J Endocrinol Invest 24:587–597

    PubMed  CAS  Google Scholar 

  8. Crowther GJ, Carey MF, Kemper WF, Conley KE (2002) Control of glycolysis in contracting skeletal muscle. I. Turning it on. Am J Physiol 282:E67–E73

    CAS  Google Scholar 

  9. De Blasi RA, Ferrari M, Natali A, Conti G, Mega A, Gasparetto A (1994) Noninvasive measurement of forearm blood flow and oxygen consumption by near-infrared spectroscopy. J Appl Physiol 76:1388–1393

    PubMed  Google Scholar 

  10. Duncan A, Meek JH, Clemence M, Elwell CE, Tyszczuk L, Cope M, Delpy DT (1995) Optical pathlength measurements on adult head, calf and forearm and the head of the newborn infant using phase resolved optical spectroscopy. Phys Med Biol 40:295–304

    Article  PubMed  CAS  Google Scholar 

  11. Egaña M, Green S (2005) Effect of body tilt on calf muscle performance and blood flow in humans. J Appl Physiol 98:2249–2258

    Article  PubMed  Google Scholar 

  12. Eiken O (1988) Effects of increased muscle perfusion pressure on responses to dynamic leg exercise in man. Eur J Appl Physiol 57:772–776

    Article  CAS  Google Scholar 

  13. Gasiorowska A, Nazar K, Mikulski T, Cybulski G, Niewiadomski W, Smorawinski J, Krzeminski K, Porta S, Kaciuba-Uscilko H (2005) Hemodynamic and neuroendocrine predictors of lower body negative pressure (LBNP) intolerance in healthy young men. J Physiol Pharmacol 56:179–193

    PubMed  CAS  Google Scholar 

  14. Hamaoka T, Katsumura T, Murase N, Sako T, Higuchi H, Murakami M, Esaki K, Kime R, Homma T, Sugeta A, Kurosawa Y, Shimomitsu T, Chance B (2003) Muscle oxygen consumption at onset of exercise by near infrared spectroscopy in humans. Adv Exp Med Biol 530:475–483

    PubMed  Google Scholar 

  15. Hinghofer-Szalkay HG, Vigas M, Sauseng-Fellegger G, König EM, Lichardus B, Jezova D (1996) Head-up tilt and lower body suction: comparison of hormone responses in healthy men. Physiol Res 45:369–378

    PubMed  CAS  Google Scholar 

  16. Iotti S, Gottardi G, Clementi V, Barbiroli B (2004) The mono-exponential pattern of phosphocreatine recovery after muscle exercise is a particular case of a more complex behaviour. Biochim Biophys Acta 1608:131–139

    Article  PubMed  CAS  Google Scholar 

  17. Kahn JF, Huart F, Kapitaniak B, Monod H (1986) Effect of arm position on cardiovascular responses during isometric handgrips. Eur J Appl Physiol Occup Physiol 55:88–92

    Article  PubMed  CAS  Google Scholar 

  18. Kemp GJ, Taylor DJ, Radda GK (1993) Control of phosphocreatine resynthesis during recovery from exercise in human skeletal muscle. NMR Biomed 6:66–72

    Article  PubMed  CAS  Google Scholar 

  19. Kemp GJ, Taylor DJ, Thompson CH, Hands LJ, Rajagopalan B, Styles P, Radda GK (1993) Quantitative analysis by 31P magnetic resonance spectroscopy of abnormal mitochondrial oxidation in skeletal muscle during recovery from exercise. NMR Biomed 6:302–310

    Article  PubMed  CAS  Google Scholar 

  20. Kushmerick MJ, Meyer RA, Brown TR (1992) Regulation of oxygen consumption in fast- and slow-twitch muscle. Am J Physiol 263:C598–C606

    PubMed  CAS  Google Scholar 

  21. Lösel R, Schultz A, Boldyreff B, Wehling M (2004) Rapid effects of aldosterone on vascular cells: clinical implications. Steroids 69:575–578

    Article  PubMed  CAS  Google Scholar 

  22. Marcinek DJ, Ciesielski WA, Conley KE, Schenkman KA (2003) Oxygen regulation and limitation to cellular respiration in mouse skeletal muscle in vivo. Am J Physiol Heart Circ Physiol 285:H1900–H1908

    PubMed  CAS  Google Scholar 

  23. Molé PA, Chung Y, Tran TK, Sailasuta N, Hurd R, Jue T (1999) Myoglobin desaturation with exercise intensity in human gastrocnemius muscle. Am J Physiol 277:R173–R180

    PubMed  Google Scholar 

  24. Rothman DL, Shulman RG, Shulman GI (1992) 31P nuclear magnetic resonance measurements of muscle glucose-6- phosphate. Evidence for reduced insulin-dependent muscle glucose transport or phosphorylation activity in non-insulin-dependent diabetes mellitus. J Clin Invest 89:1069–1075

    Article  PubMed  CAS  Google Scholar 

  25. Sahlin K, Edström L, Sjöholm H (1983) Fatigue and phosphocreatine depletion during carbon dioxide-induced acidosis in rat muscle. Am J Physiol 245:C15–C20

    PubMed  CAS  Google Scholar 

  26. Saunders NR, Dinenno FA, Pyke KE, Rogers AM, Tschakovsky ME (2005) Impact of combined NO and PG blockade on rapid vasodilation in a forearm mild-to-moderate exercise transition in humans. Am J Physiol Heart Circ Physiol 288:H214–H220

    Article  PubMed  CAS  Google Scholar 

  27. Saunders NR, Pyke KE, Tschakovsky ME (2005) Dynamic response characteristics of local muscle blood flow regulatory mechanisms in human forearm exercise. J Appl Physiol 98:1286–1296

    Article  PubMed  Google Scholar 

  28. Saunders NR, Tschakovsky ME (2004) Evidence for a rapid vasodilatory contribution to immediate hyperemia in rest-to-mild and mild-to-moderate forearm exercise transitions in humans. J Appl Physiol 97:1143–1151

    Article  PubMed  Google Scholar 

  29. Schneider G, Koch H, Maassen N, Leibfritz D (1999) 31P NMR Spectroscopy of the human calf Muscle during intensive interval exercise. Eur J Appl Physiol 69:S14

    Google Scholar 

  30. Shushakov V, Stubbe C, Peuckert A, Endeward V, Maassen N (2007) The relationships between plasma potassium, muscle excitability, and fatigue during voluntary exercise. Exp Physiol 92:705–715

    Article  PubMed  CAS  Google Scholar 

  31. Søgaard K, Gandevia SC, Todd G, Petersen NT, Taylor JL (2006) The effect of sustained low-intensity contractions on supraspinal fatigue in human elbow flexor muscles. J Physiol 573:511–523

    Article  PubMed  CAS  Google Scholar 

  32. Taylor DJ, Bore PJ, Styles P, Gadian DG, Radda GK (1983) Bioenergetics of intact human muscle. A 31P nuclear magnetic resonance study. Mol Biol Med 1:77–94

    PubMed  CAS  Google Scholar 

  33. Tran TK, Sailasuta N, Kreutzer U, Hurd R, Chung Y, Mole P, Kuno S, Jue T (1999) Comparative analysis of NMR and NIRS measurements of intracellular PO2 in human skeletal muscle. Am J Physiol 276:R1682–R1690

    PubMed  CAS  Google Scholar 

  34. Van Beekvelt MC, Colier WN, Wevers RA, Van Engelen BG (2001) Performance of near-infrared spectroscopy in measuring local O(2) consumption and blood flow in skeletal muscle. J Appl Physiol 90:511–519

    PubMed  Google Scholar 

  35. Vestergaard-Poulsen P, Thomsen C, Sinkjaer T, Henriksen O (1995) Simultaneous 31P-NMR spectroscopy and EMG in exercising and recovering human skeletal muscle: a correlation study. J Appl Physiol 79:1469–1478

    PubMed  CAS  Google Scholar 

  36. Westerblad H, Allen DG, Lännergren J (2002) Muscle fatigue: lactic acid or inorganic phosphate the major cause? News Physiol Sci 17:17–21

    PubMed  CAS  Google Scholar 

  37. Zange J, Müller K, Gerzer R, Sippel K, Wehling M (1996) Nongenomic effects of aldosterone on phosphocreatine levels in human calf muscle during recovery from exercise. J Clin Endocrinol Metab 81:4296–4300

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jochen Zange.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Zange, J., Beisteiner, M., Müller, K. et al. Energy metabolism in intensively exercising calf muscle under a simulated orthostasis. Pflugers Arch - Eur J Physiol 455, 1153–1163 (2008). https://doi.org/10.1007/s00424-007-0361-9

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00424-007-0361-9

Keywords

Navigation