Skip to main content

Advertisement

Log in

Modeling trade-off between time-optimal and minimum energy in saccade main sequence

  • Original Paper
  • Published:
Biological Cybernetics Aims and scope Submit manuscript

Abstract

Saccadic eye movement is highly stereotyped and commonly believed to be governed by an open-loop control mechanism. We propose a principle combining time-optimal and minimum control energy criteria to account for the saccade main sequence as observed from empirical data. The model prediction revealed that the weighting factor of the energy conservation becomes more dominant than the time-optimal when the saccade amplitude is large. We demonstrate that the proposed model is a general form synthesizing the time-optimum, minimum torque change, and minimum control effort models. In addition, we show the connection between our model and the stochastic minimum variance models from the aspect of optimization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Athans M, Falb P (1966) Optimal control: an introduction to the theory and its applications. McGraw-Hill, New York

    Google Scholar 

  • Bahill AT, Adler D et al (1975) Most naturally occurring human saccades have magnitudes of 15 degrees or less. Investig Ophthalmol 14(6): 468–469

    CAS  Google Scholar 

  • Clark M, Stark L (1974) Control of human eye movements: I. Modelling of extraocular muscle. Math Biosci 20(3–4): 191–211

    Article  Google Scholar 

  • Collewijn H, Erkelens CJ et al (1988) Binocular co-ordination of human horizontal saccadic eye movements. J Physiol 404(1): 157–182

    PubMed  CAS  Google Scholar 

  • Dean P (1996) Motor unit recruitment in a distributed model of extraocular muscle. J Neurophysiol 76(2): 727

    PubMed  CAS  Google Scholar 

  • Enderle J, Wolfe J (1987) Time-optimal control of saccadic eye movements. IEEE Trans Biomed Eng 34: 43–55

    Article  PubMed  CAS  Google Scholar 

  • Fuchs A, Binder M (1983) Fatigue resistance of human extraocular muscles. J Neurophysiol 49(1): 28–34

    PubMed  CAS  Google Scholar 

  • Harris CM, Wolpert DM (1998) Signal-dependent noise determines motor planning. Nature 394(6695): 780–784

    Article  PubMed  CAS  Google Scholar 

  • Harris C, Wolpert D (2006) The main sequence of saccades optimizes speed-accuracy trade-off. Biol Cybern 95(1): 21–29

    Article  PubMed  Google Scholar 

  • Harwood M, Mezey L et al (1999) The spectral main sequence of human saccades. J Neurosci 19(20): 9098

    PubMed  CAS  Google Scholar 

  • Hatze H (1977) A myocybernetic control model of skeletal muscle. Biol Cybern 25(2): 103–119

    Article  PubMed  CAS  Google Scholar 

  • Hogan N (1984) An organizing principle for a class of voluntary movements. J Neurosci 4(11): 2745

    PubMed  CAS  Google Scholar 

  • Kardamakis AA, Moschovakis AK (2009) Optimal Control of Gaze Shifts. J Neurosci 29(24): 7723–7730

    Article  PubMed  CAS  Google Scholar 

  • Kirk D (2004) Optimal control theory: an introduction. Dover Publications, New York

    Google Scholar 

  • Koene AR, Erkelens CJ (2004) Properties of 3D rotations and their relation to eye movement control. Biol Cybern 90(6): 410–417

    Article  PubMed  Google Scholar 

  • Nelson W (1983) Physical principles for economies of skilled movements. Biol Cybern 46(2): 135–147

    Article  PubMed  CAS  Google Scholar 

  • Rao AV, Benson DA, et al. (2010) Algorithm 902: GPOPS, A MATLAB software for solving multiple-phase optimal control problems using the gauss pseudospectral method. Acm Trans Math Software 37(2)

  • Robinson DA (1973) Models of saccadic eye-movement control-system. Kybernetik 14(2): 71–83

    Article  PubMed  CAS  Google Scholar 

  • Robinson DA (1981) Models of the mechanics of eye movements. In: Zuber B (eds) Models of oculomotor behavior and control. CRC Press, Inc., Chicago, pp 21–42

    Google Scholar 

  • Robinson D, Gordon J et al (1986) A model of the smooth pursuit eye movement system. Biol Cybern 55(1): 43–57

    Article  PubMed  CAS  Google Scholar 

  • Tanaka H, Krakauer JW et al (2006) An optimization principle for determining movement duration. J Neurophysiol 95(6): 3875–3886

    Article  PubMed  Google Scholar 

  • Tanaka H, Tai MH et al (2004) Different predictions by the minimum variance and minimum torque-change models on the skewness of movement velocity profiles. Neural Comput 16(10): 2021–2040

    Article  PubMed  Google Scholar 

  • Uno Y, Kawato M et al (1989) Formation and control of optimal trajectory in human multijoint arm movement. Biol Cybern 61(2): 89–101

    Article  PubMed  CAS  Google Scholar 

  • van Beers RJ (2008) Saccadic eye movements minimize the consequences of motor noise. PLos One 3(4): e2070

    Article  PubMed  Google Scholar 

  • van Gisbergen JAM, Robinson DA et al (1981) A quantitative-analysis of generation of saccadic eye-movements by burst neurons. J Neurophysiol 45(3): 417–442

    PubMed  Google Scholar 

  • Van Opstal A, Van Gisbergen J et al (1985) Reconstruction of neural control signals for saccades based on an inverse method. Vis Res 25(6): 789

    Article  PubMed  CAS  Google Scholar 

  • Winters J, Stark L (1985) Analysis of fundamental human movement patterns through the use of in-depth antagonistic muscle models. IEEE Trans Biomed Eng 32: 826–839

    Article  PubMed  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuezhong Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wang, X., Hsiang, S.M. Modeling trade-off between time-optimal and minimum energy in saccade main sequence. Biol Cybern 104, 65–73 (2011). https://doi.org/10.1007/s00422-011-0420-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00422-011-0420-3

Keywords

Navigation