Skip to main content
Log in

Impact of creatine on muscle performance and phosphagen stores after immobilization

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Purpose

This study investigated the effect of creatine (CR) supplementation during cast-immobilization to preserve skeletal muscle total work, power and intramuscular phosphocreatine (PCr) kinetics during dynamic exercise.

Methods

Twenty-five active individuals (24 ± 4 years,) performed wrist flexion exercise within a 1.9 Tesla superconducting magnet before and after 1 week of cast-immobilization. An incremental protocol to fatigue and two constant load (CL1 and CL2) exercise bouts were performed. While casted, participants consumed either 20 g day−1 of CR or a placebo (PLA). 31P magnetic resonance spectroscopy was used to quantify in vivo intramuscular PCr levels.

Results

No significant group × time interaction effects were found for work or power throughout all exercise bouts. Total work was significantly reduced over time in both groups (p = 0.049) during the incremental exercise bout. Work production in CL1 tended (p = 0.073) to attenuate in the CR group, compared to PLA. No changes were observed in CL2. Baseline PCr significantly decreased with casting in PLA (PRE: 26.6 ± 6.3 vs. POST: 22.5 ± 5.6 mM kg−1 wet muscle, p = 0.003). No change (p = 0.31) was observed in the CR group. Changes in work production were significantly correlated with changes in resting PCr in CR (r = −0.63, p = 0.021) but not PLA (r = −0.36, p = 0.26) group.

Conclusions

Results suggest decreases in short-term endurance may be due to alternations of PCr status and/or metabolism. More research is needed to fully determine the efficacy of CR supplementation during short-term immobilization.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

Abbreviations

ANOVA:

Analysis of variance

ATP:

Adenosine triphosphate

CR:

Creatine

CL1:

Constant load exercise bout 1

CL2:

Constant load exercise bout 2

CSA:

Cross-sectional area

FIDs:

Free induction decays

MRS:

Magnetic resonance spectroscopy

NMR:

New Mexico Resonance

PCr:

Phosphocreatine

Pi:

Inorganic phosphate

PLA:

Placebo

P:

Power

SE:

Standard error

W:

Work

References

  • Aoki MS, Lima WP, Miyabara EH, Gouveia CH, Moriscot AS (2004) Deleteriuos effects of immobilization upon rat skeletal muscle: role of creatine supplementation. Clin Nutr 23(5):1176–1183. doi:10.1016/j.clnu.2004.03.004

    Article  CAS  PubMed  Google Scholar 

  • Balsom PD, Soderlund K, Sjodin B, Ekblom B (1995) Skeletal muscle metabolism during short duration high-intensity exercise: influence of creatine supplementation. Acta Physiol Scand 154(3):303–310. doi:10.1111/j.1748-1716.1995.tb09914.x

    Article  CAS  PubMed  Google Scholar 

  • Berg HE, Dudley GA, Haggmark T, Ohlsen H, Tesch PA (1991) Effects of lower limb unloading on skeletal muscle mass and function in humans. J Appl Physiol (Bethesda, Md: 1985) 70(4):1882–1885

    CAS  Google Scholar 

  • Candow DG, Chilibeck PD (2005) Differences in size, strength, and power of upper and lower body muscle groups in young and older men. J Gerontol A Biol Sci Med Sci 60(2):148–156

    Article  PubMed  Google Scholar 

  • Casey A, Constantin-Teodosiu D, Howell S, Hultman E, Greenhaff PLA (1996) Creatine ingestion favorably affects performance and muscle metabolism during maximal exercise in humans. Am J Physiol 271(1 Pt 1):E31–E37

    CAS  PubMed  Google Scholar 

  • Clark BC, Taylor JL, Hoffman RL, Dearth DJ, Thomas JS (2010) Cast immobilization increases long-interval intracortical inhibition. Muscle Nerve 42(3):363–372. doi:10.1002/mus.21694

    Article  PubMed Central  PubMed  Google Scholar 

  • Cooke R, Pate E (1985) The effects of ADP and phosphate on the contraction of muscle fibers. Biophys J 48(5):789–798. doi:10.1016/S0006-3495(85)83837-6

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Desplanches D, Mayet MH, Sempore B, Flandrois R (1987) Structural and functional responses to prolonged hindlimb suspension in rat muscle. J Appl Physiol (Bethesda, Md: 1985) 63(2):558–563

    CAS  Google Scholar 

  • Fitts RH, Metzger JM, Riley DA, Unsworth BR (1986) Models of disuse: a comparison of hindlimb suspension and immobilization. J Appl Physiol 60(6):1946–1953

    Article  CAS  PubMed  Google Scholar 

  • Greenhaff PLA, Bodin K, Soderlund K, Hultman E (1994) Effect of oral creatine supplementation on skeletal muscle phosphocreatine resynthesis. Am J Physiol 266(5 Pt 1):E725–E730

    CAS  PubMed  Google Scholar 

  • Harris RC, Hultman E, Nordesjo LO (1974) Glycogen, glycolytic intermediates and high-energy phosphates determined in biopsy samples of musculus quadriceps femoris of man at rest. Methods and variance of values. Scand J Clin Lab Invest 33(2):109–120

    Article  CAS  PubMed  Google Scholar 

  • Harris RC, Soderlund K, Hultman E (1992) Elevation of creatine in resting and exercised muscle of normal subjects by creatine supplementation. Clin Sci (Lond) 83(3):367–374

    Article  CAS  Google Scholar 

  • Hather BM, Adams GR, Tesch PA, Dudley GA (1992) Skeletal muscle responses to lower limb suspension in humans. J Appl Physiol 72(4):1493–1498

    CAS  PubMed  Google Scholar 

  • Hespel P, Op’t Eijnde B, Van Leemputte M, Urso B, Greenhaff PLA, Labarque V, Dymarkowski S, Van Hecke P, Richter EA (2001) Oral creatine supplementation facilitates the rehabilitation of disuse atrophy and alters the expression of muscle myogenic factors in humans. J Physiol 536(Pt 2):625–633

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Johnston AP, Burke DG, MacNeil LG, Candow DG (2009) Effect of creatine supplementation during cast-induced immobilization on the preservation of muscle mass, strength, and endurance. J Strength Cond Res 23(1):116–120

    Article  PubMed  Google Scholar 

  • Kemp GJ, Meyerspeer M, Moser E (2007) Absolute quantification of phosphorus metabolite concentrations in human muscle in vivo by 31P MRS: a quantitative review. NMR Biomed 20(6):555–565. doi:10.1002/nbm.1192

    Article  CAS  PubMed  Google Scholar 

  • LeBlanc A, Gogia P, Schneider V, Krebs J, Schonfeld E, Evans H (1988) Calf muscle area and strength changes after 5 weeks of horizontal bed rest. Am J Sports Med 16(6):624–629

    Article  CAS  PubMed  Google Scholar 

  • McCann DJ, Mole PA, Caton JR (1995) Phosphocreatine kinetics in humans during exercise and recovery. Med Sci Sports Exerc 27(3):378–389

    Article  CAS  PubMed  Google Scholar 

  • McComas AJ (1994) Human neuromuscular adaptations that accompany changes in activity. Med Sci Sports Exerc 26(12):1498–1509

    Article  CAS  PubMed  Google Scholar 

  • McCully KK, Iotti S, Kendrick K, Wang Z, Posner JD, Leigh J Jr, Chance B (1994) Simultaneous in vivo measurements of HbO2 saturation and PCr kinetics after exercise in normal humans. J Appl Physiol 77(1):5–10

    CAS  PubMed  Google Scholar 

  • Miles MP, Clarkson PM, Bean M, Ambach K, Mulroy J, Vincent K (1994) Muscle function at the wrist following 9 d of immobilization and suspension. Med Sci Sports Exerc 26(5):615–623

    Article  CAS  PubMed  Google Scholar 

  • Pathare N, Walter GA, Stevens JE, Yang Z, Okerke E, Gibbs JD, Esterhai JL, Scarborough MT, Gibbs CP, Sweeney HL, Vandenborne K (2005) Changes in inorganic phosphate and force production in human skeletal muscle after cast immobilization. J Appl Physiol 98(1):307–314. doi:10.1152/japplphysiol.00612.2004

    Article  CAS  PubMed  Google Scholar 

  • Rico-Sanz J, Mendez Marco MT (2000) Creatine enhances oxygen uptake and performance during alternating intensity exercise. Med Sci Sports Exerc 32(2):379–385

    Article  CAS  PubMed  Google Scholar 

  • Seki K, Taniguchi Y, Narusawa M (2001) Alterations in contractile properties of human skeletal muscle induced by joint immobilization. J Physiol 530(Pt 3):521–532

    Article  PubMed Central  CAS  PubMed  Google Scholar 

  • Thompson CH, Kemp GJ, Sanderson AL, Radda GK (1995) Skeletal muscle mitochondrial function studied by kinetic analysis of postexercise phosphocreatine resynthesis. J Appl Physiol 78(6):2131–2139

    CAS  PubMed  Google Scholar 

  • Tomanek RJ, Lund DD (1974) Degeneration of different types of skeletal muscle fibres. II. Immobilization. J Anat 118(Pt 3):531–541

    PubMed Central  CAS  PubMed  Google Scholar 

  • Vandenborne K, Elliott MA, Walter GA, Abdus S, Okereke E, Shaffer M, Tahernia D, Esterhai JL (1998) Longitudinal study of skeletal muscle adaptations during immobilization and rehabilitation. Muscle Nerve 21(8):1006–1012

    Article  CAS  PubMed  Google Scholar 

  • Volek JS, Duncan ND, Mazzetti SA, Staron RS, Putukian M, Gomez AL, Pearson DR, Fink WJ, Kraemer WJ (1999) Performance and muscle fiber adaptations to creatine supplementation and heavy resistance training. Med Sci Sports Exerc 31(8):1147–1156

    Article  CAS  PubMed  Google Scholar 

  • Wall BT, van Loon LJ (2013) Nutritional strategies to attenuate muscle disuse atrophy. Nutr Rev 71(4):195–208. doi:10.1111/nure.12019

    Article  PubMed  Google Scholar 

  • Yquel RJ, Arsac LM, Thiaudiere E, Canioni P, Manier G (2002) Effect of creatine supplementation on phosphocreatine resynthesis, inorganic phosphate accumulation and pH during intermittent maximal exercise. J Sports Sci 20(5):427–437. doi:10.1080/026404102317366681

    Article  CAS  PubMed  Google Scholar 

  • Yue GH, Bilodeau M, Hardy PA, Enoka RM (1997) Task-dependent effect of limb immobilization on the fatigability of the elbow flexor muscles in humans. Exp Physiol 82(3):567–592

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Joan Iverson for subject scheduling and randomization, and Rob Robergs, Hung Sheng Hsu, Nicole Vargas, Roy Salgado, Matt DuSold, and Jason Beam for technical support. Partial funding for this study was provided by a graduate research and development grant from the University of New Mexico’s Graduate and Professional Student Association.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jeremy C. Fransen.

Additional information

Communicated by Michael Lindinger.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fransen, J.C., Zuhl, M., Kerksick, C.M. et al. Impact of creatine on muscle performance and phosphagen stores after immobilization. Eur J Appl Physiol 115, 1877–1886 (2015). https://doi.org/10.1007/s00421-015-3172-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-015-3172-2

Keywords

Navigation