Skip to main content

Advertisement

Log in

A mixed-effects model of the dynamic response of muscle gene transcript expression to endurance exercise

  • Original Article
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

Abstract

Altered expression of a broad range of gene transcripts after exercise reflects the specific adjustment of skeletal muscle makeup to endurance training. Towards a quantitative understanding of this molecular regulation, we aimed to build a mixed-effects model of the dynamics of co-related transcript responses to exercise. It was built on the assumption that transcript levels after exercise varied because of changes in the balance between transcript synthesis and degradation. It was applied to microarray data of 231 gene transcripts in vastus lateralis muscle of six subjects 1, 8 and 24 h after endurance exercise and 6-week training on a stationary bicycle. Cluster analysis was used to select groups of transcripts having highest co-correlation of their expression (r > 0.70): Group 1 comprised 45 transcripts including factors defining the oxidative and contractile phenotype and Group 2 included 39 transcripts mainly defined by factors found at the cell periphery and the extracellular space. Data from six subjects were pooled to filter experimental noise. The model fitted satisfactorily the responses of Group 1 (r 2 = 0.62 before and 0.85 after training, P < 0.001) and Group 2 (r 2 = 0.75 and 0.79, P < 0.001). Predicted variation in transcription rate induced by exercise yielded a difference in amplitude and time-to-peak response of gene transcripts between the two groups before training and with training in Group 2. The findings illustrate that a mixed-effects model of transcript responses to exercise is suitable to explore the regulation of muscle plasticity by training at the transcriptional level and indicate critical experiments needed to consolidate model parameters empirically.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Bahar B, Monahan FJ, Moloney AP, Schmidt O, MacHugh DE, Sweeney T (2007) Long-term stability of RNA in post-mortem bovine skeletal muscle, liver and subcutaneous adipose tissues. BMC Mol Biol 8:108

    Article  PubMed  Google Scholar 

  • Clark WA (1993) Evidence for post-translational kinetic compartmentation of protein turnover pools in isolated adult cardiac myocytes. J Biol Chem 268:20243–20251

    PubMed  CAS  Google Scholar 

  • Cossins A, Somero G (2007) Guest editors’ introduction. J Exp Biol 210:1491

    Article  PubMed  Google Scholar 

  • Crowther GJ, Jubrias SA, Gronka RK, Conley KE (2002) A “functional biopsy” of muscle properties in sprinters and distance runners. Med Sci Sports Exerc 34:1719–1724

    Article  PubMed  Google Scholar 

  • Cui X, Churchill GA (2003) Statistical tests for differential expression in cDNA microarray experiments. Genome Biol 4:210

    Article  PubMed  Google Scholar 

  • de Jong H, Ropers D (2006) Strategies for dealing with incomplete information in the modeling of molecular interaction networks. Brief Bioinform 7:354–363

    Article  PubMed  Google Scholar 

  • Fluck M (2006) Functional, structural and molecular plasticity of mammalian skeletal muscle in response to exercise stimuli. J Exp Biol 209:2239–2248

    Article  PubMed  CAS  Google Scholar 

  • Fluck M, Hoppeler H (2003) Molecular basis of skeletal muscle plasticity—from gene to form and function. Rev Physiol Biochem Pharmacol 146:159–216

    Article  PubMed  CAS  Google Scholar 

  • Fluck M, Dapp C, Schmutz S, Wit E, Hoppeler H (2005) Transcriptional profiling of tissue plasticity: role of shifts in gene expression and technical limitations. J Appl Physiol 99:397–413

    Article  PubMed  CAS  Google Scholar 

  • Flueck M (2009) Tuning of mitochondrial pathways by muscle work: from triggers to sensors and expression signatures. Appl Physiol Nutr Metab 34:447–453

    Article  PubMed  CAS  Google Scholar 

  • Garnier A, Fortin D, Zoll J, N’Guessan B, Mettauer B, Lampert E, Veksler V, Ventura-Clapier R (2005) Coordinated changes in mitochondrial function and biogenesis in healthy and diseased human skeletal muscle. FASEB J 19:43–52

    Article  PubMed  CAS  Google Scholar 

  • Girgis S, Pai SM, Girgis IG, Batra VK (2005) Pharmacodynamic parameter estimation: population size versus number of samples. Aaps J 7:46

    Article  PubMed  Google Scholar 

  • Holloszy JO, Rennie MJ, Hickson RC, Conlee RK, Hagberg JM (1977) Physiological consequences of the biochemical adaptations to endurance exercise. Ann NY Acad Sci 301:440–450

    Article  PubMed  CAS  Google Scholar 

  • Hoppeler H, Fluck M (2003) Plasticity of skeletal muscle mitochondria: structure and function. Med Sci Sports Exerc 35:95–104

    Article  PubMed  CAS  Google Scholar 

  • Hoppeler H, Weibel ER (2000) Structural and functional limits for oxygen supply to muscle. Acta Physiol Scand 168:445–456

    Article  PubMed  CAS  Google Scholar 

  • Keller P, Vollaard N, Babraj J, Ball D, Sewell DA, Timmons JA (2007) Using systems biology to define the essential biological networks responsible for adaptation to endurance exercise training. Biochem Soc Trans 35:1306–1309

    Article  PubMed  CAS  Google Scholar 

  • Koulmann N, Bigard AX (2006) Interaction between signalling pathways involved in skeletal muscle responses to endurance exercise. Pflugers Arch 452:125–139

    Article  PubMed  CAS  Google Scholar 

  • Mahoney DJ, Tarnopolsky MA (2005) Understanding skeletal muscle adaptation to exercise training in humans: contributions from microarray studies. Phys Med Rehabil Clin N Am 16:859–873, vii

    Google Scholar 

  • Mahoney DJ, Parise G, Melov S, Safdar A, Tarnopolsky MA (2005) Analysis of global mRNA expression in human skeletal muscle during recovery from endurance exercise. Faseb J 19:1498–1500

    PubMed  CAS  Google Scholar 

  • McCarthy JJ, Andrews JL, McDearmon EL, Campbell KS, Barber BK, Miller BH, Walker JR, Hogenesch JB, Takahashi JS, Esser KA (2007) Identification of the circadian transcriptome in adult mouse skeletal muscle. Physiol Genomics 31:86–95

    Article  PubMed  CAS  Google Scholar 

  • Miller BH, McDearmon EL, Panda S, Hayes KR, Zhang J, Andrews JL, Antoch MP, Walker JR, Esser KA, Hogenesch JB, Takahashi JS (2007) Circadian and CLOCK-controlled regulation of the mouse transcriptome and cell proliferation. Proc Natl Acad Sci USA 104:3342–3347

    Article  PubMed  CAS  Google Scholar 

  • Ogungbenro K, Dokoumetzidis A, Aarons L (2009) Application of optimal design methodologies in clinical pharmacology experiments. Pharm Stat 8:239–252

    Article  PubMed  Google Scholar 

  • Oosterhof R, Ith M, Trepp R, Christ E, Fluck M (2011) Regulation of whole body energy homeostasis with growth hormone replacement therapy and endurance exercise. Physiol Genomics 43:739–748

    Article  PubMed  CAS  Google Scholar 

  • Perry CG, Lally J, Holloway GP, Heigenhauser GJ, Bonen A, Spriet LL (2010) Repeated transient mRNA bursts precede increases in transcriptional and mitochondrial proteins during training in human skeletal muscle. J Physiol 588:4795–4810

    Article  PubMed  CAS  Google Scholar 

  • Pilegaard H, Ordway GA, Saltin B, Neufer PD (2000) Transcriptional regulation of gene expression in human skeletal muscle during recovery from exercise. Am J Physiol Endocrinol Metab 279:E806–E814

    PubMed  CAS  Google Scholar 

  • Puntschart A, Claassen H, Jostarndt K, Hoppeler H, Billeter R (1995) mRNAs of enzymes involved in energy metabolism and mtDNA are increased in endurance-trained athletes. Am J Physiol 269:C619–C625

    PubMed  CAS  Google Scholar 

  • Saltin B, Henriksson J, Nygaard E, Andersen P, Jansson E (1977) Fiber types and metabolic potentials of skeletal muscles in sedentary man and endurance runners. Ann NY Acad Sci 301:3–29

    Article  PubMed  CAS  Google Scholar 

  • Schmitt B, Fluck M, Decombaz J, Kreis R, Boesch C, Wittwer M, Graber F, Vogt M, Howald H, Hoppeler H (2003) Transcriptional adaptations of lipid metabolism in tibialis anterior muscle of endurance-trained athletes. Physiol Genomics 15:148–157

    PubMed  CAS  Google Scholar 

  • Schmutz S, Dapp C, Wittwer M, Vogt M, Hoppeler H, Fluck M (2006) Endurance training modulates the muscular transcriptome response to acute exercise. Pflugers Arch 451:678–687

    Article  PubMed  CAS  Google Scholar 

  • Schmutz S, Dapp C, Wittwer M, Durieux AC, Mueller M, Weinstein F, Vogt M, Hoppeler H, Fluck M (2010) A hypoxia complement differentiates the muscle response to endurance exercise. Exp Physiol 95:723–735

    Article  PubMed  Google Scholar 

  • Shyu AB, Wilkinson MF, van Hoof A (2008) Messenger RNA regulation: to translate or to degrade. EMBO J 27:471–481

    Article  PubMed  CAS  Google Scholar 

  • Singh S, Yang HY, Chen MY, Yu SL (2007) A kinetic-dynamic model for regulatory RNA processing. J Biotechnol 127:488–495

    Article  PubMed  CAS  Google Scholar 

  • Stepto NK, Coffey VG, Carey AL, Ponnampalam AP, Canny BJ, Powell D, Hawley JA (2009) Global gene expression in skeletal muscle from well-trained strength and endurance athletes. Med Sci Sports Exerc 41:546–565

    PubMed  CAS  Google Scholar 

  • t Hoen PA, Hirsch M, de Meijer EJ, de Menezes RX, van Ommen GJ, den Dunnen JT (2011) mRNA degradation controls differentiation state-dependent differences in transcript and splice variant abundance. Nucleic Acids Res 39:556–566

    Article  PubMed  Google Scholar 

  • Timmons JA, Knudsen S, Rankinen T, Koch LG, Sarzynski M, Jensen T, Keller P, Scheele C, Vollaard NB, Nielsen S, Akerstrom T, MacDougald OA, Jansson E, Greenhaff PL, Tarnopolsky MA, van Loon LJ, Pedersen BK, Sundberg CJ, Wahlestedt C, Britton SL, Bouchard C (2010) Using molecular classification to predict gains in maximal aerobic capacity following endurance exercise training in humans. J Appl Physiol 108:1487–1496

    Article  PubMed  CAS  Google Scholar 

  • Wang L, Chen X, Wolfinger RD, Franklin JL, Coffey RJ, Zhang B (2009) A unified mixed effects model for gene set analysis of time course microarray experiments. Stat Appl Genet Mol Biol 8(1):Article 47

  • Williams RS, Neufer PD (1996) Regulation of gene expression in skeletal muscle by contractile activity. In: Rowell LB, Shepherd JT (eds) The Handbook of Physiology Exercise: regulation and integration of multiple systems. For the American Physiological Society by Oxford University Press, Bethesda, pp 1124–1150

  • Yan Z, Okutsu M, Akhtar YN, Lira VA (2011) Regulation of exercise-induced fiber type transformation, mitochondrial biogenesis, and angiogenesis in skeletal muscle. J Appl Physiol 110:264–274

    Article  PubMed  CAS  Google Scholar 

  • Yang Y, Creer A, Jemiolo B, Trappe S (2005) Time course of myogenic and metabolic gene expression in response to acute exercise in human skeletal muscle. J Appl Physiol 98:1745–1752

    Article  PubMed  CAS  Google Scholar 

  • Zierath JR, Hawley JA (2004) Skeletal muscle fiber type: influence on contractile and metabolic properties. PLoS Biol 2:e348

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

We are grateful for the previous financial support through the Swiss National Science Foundation (MF).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thierry Busso.

Additional information

Communicated by Håkan Westerblad.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Busso, T., Flück, M. A mixed-effects model of the dynamic response of muscle gene transcript expression to endurance exercise. Eur J Appl Physiol 113, 1279–1290 (2013). https://doi.org/10.1007/s00421-012-2547-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-012-2547-x

Keywords

Navigation