Skip to main content
Log in

Strong ion reserve: a viewpoint on acid base equilibria and buffering

  • Short Communication
  • Published:
European Journal of Applied Physiology Aims and scope Submit manuscript

An Erratum to this article was published on 30 January 2011

Abstract

Evidence suggests that strong ions can exist reversibly bound to proteins in a pH-dependent manner and that they can be recruited into the biological solution, modulating its strong ion difference in a process that opposes the acid base disturbances imposed on the system. These recruitable strong ions represent the solution’s “strong ions”. The physiological role of these protein-bound strong ion reserve in the buffering of acid base disorders is discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Andreassen S, Rees SE (2005) Mathematical models of oxygen and carbon dioxide storage and transport: interstitial fluid and tissue stores and whole-body transport. Crit Rev Biomed Eng 33(3):265–298

    Article  PubMed  CAS  Google Scholar 

  • Berridge MJ, Bootman MD, Roderick HL (2003) Calcium signalling: dynamics, homeostasis and remodeling. Nat Rev Mol Cell Biol 4:517–529

    Article  PubMed  CAS  Google Scholar 

  • Fogh-Andersen N, Bjerrum PJ, Siggaard-Andersen O (1993) Ionic binding, net charge, and Donnan effect of human serum albumin as a function of pH. Clin Chem 39(1):48–52

    PubMed  CAS  Google Scholar 

  • Kancir CB, Petersen PH, Madsen T, Olesen AS (1988) In vivo and in vitro ionized calcium variations induced by acute respiratory acid base disturbances. Clin Chim Acta 175(3):307–313

    Article  PubMed  CAS  Google Scholar 

  • Oberleithner H, Greger R, Lang F (1982) The effect of respiratory and metabolic acid-base changes on ionized calcium concentration: in vivo and in vitro experiments in man and rat. Eur J Clin Invest 12(6):451–455

    Article  PubMed  CAS  Google Scholar 

  • Pedersen KO (1971) The effect of bicarbonate, PCO2 and pH on serum calcium fractions. Scand J Clin Lab Invest 27(2):145–150

    Article  PubMed  CAS  Google Scholar 

  • Pedersen KO (1972) Binding of calcium to serum albumin. II. Effect of pH via competitive hydrogen and calcium ion binding to the imidazole groups of albumin. Scand J Clin Lab Invest 29(1):75–83

    Article  PubMed  CAS  Google Scholar 

  • Prange HD, Shoemaker JL Jr, Westen EA, Horstkotte DG, Pinshow B (2001) Physiological consequences of oxygen-dependent chloride binding to hemoglobin. J Appl Physiol 91(1):33–38

    PubMed  CAS  Google Scholar 

  • Rees SE, Andreassen S (2005) Mathematical models of oxygen and carbon dioxide storage and transport: the acid-base chemistry of blood. Crit Rev Biomed Eng 33(3):209–264

    Article  PubMed  CAS  Google Scholar 

  • Rees SE, Klaestrup E, Handy J, Andreassen S, Kristensen SR (2010) Mathematical modeling of the acid–base chemistry and oxygenation of blood: a mass balance, mass action approach including plasma and red blood cells. Eur J Appl Physiol 108(3):483–494

    Article  PubMed  CAS  Google Scholar 

  • Scatchard G, Ill Scheinberg, Armstrong SH (1950) Physical chemistry of protein solutions. IV. The combination of human serum albumin with chloride ion. J Am Chem Soc 72:535–540

    Article  CAS  Google Scholar 

  • Siggaard-Andersen O (1971) Oxygen-linked hydrogen ion binding of human hemoglobin. Effects of carbon dioxide and 2,3-diphosphoglycerate. I. Studies on erythrolysate. Scand J Clin Lab Invest 27(4):351–360

    Article  PubMed  CAS  Google Scholar 

  • Siggaard-Andersen O (1974) The acid base status of the blood. Munksgaard, Copenhagen

    Google Scholar 

  • Staempfli HR, Constable PD (2003) Experimental determination of net protein charge and A(tot) and K(a) of nonvolatile buffers in human plasma. J Appl Physiol 95(2):620–630

    PubMed  CAS  Google Scholar 

  • Stewart PA (1981) How to Understand Acid–Base: a quantitative acid–base primer for biology and medicine. Elsevier, New York

    Google Scholar 

  • Stewart PA (1983) Modern quantitative acid–base chemistry. Can J Physiol Pharmacol 61(12):1444–1461

    Article  PubMed  CAS  Google Scholar 

  • Thode J, Fogh-Andersen N, Wimberley PD, Møller Sørensen A, Siggaard-Andersen O (1983) Relation between pH and ionized calcium in vitro and in vivo in man. Scand J Clin Lab Invest Suppl 165:79–82

    PubMed  CAS  Google Scholar 

  • van Leeuwen AM (1964) Net cation equivalency (base binding power) of plasma proteins. Acta Med Scand Suppl 422:1–212

    Google Scholar 

  • van Slyke DD, Hastings AB, Hiller A, Sendroy J (1928) Studies of gas and electrolyte equilibria in blood. XIV. Amounts of alkali bound by serum albumin and globulin. J Biol Chem 79:769–780

    Google Scholar 

  • Wang S, McDonnell EH, Sedor FA, Toffaletti JG (2002) pH effects on measurements of ionized calcium and ionized magnesium in blood. Arch Pathol Lab Med 126(8):947–950

    PubMed  CAS  Google Scholar 

  • Westen EA, Prange HD (2003) A reexamination of the mechanisms underlying the arteriovenous chloride shift. Physiol Biochem Zool 76(5):603–614

    Article  PubMed  CAS  Google Scholar 

  • Wooten EW (1999) Analytic calculation of physiological acid-base parameters in plasma. J Appl Physiol 86(1):326–334

    PubMed  CAS  Google Scholar 

  • Wooten EW (2003) Calculation of physiological acid-base parameters in multicompartment systems with application to human blood. J Appl Physiol 95(6):2333–2344

    PubMed  Google Scholar 

  • Wooten EW (2010) The standard strong ion difference, standard total titratable base, and their relationship to the Boston compensation rules and the Van Slyke equation for extracellular fluid. J Clin Monit Comput 24(3):177–188

    Article  PubMed  Google Scholar 

Download references

Acknowledgments

Funding none.

Conflict of interest

None.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michalis Agrafiotis.

Additional information

Communicated by Susan A. Ward.

An erratum to this article can be found at http://dx.doi.org/10.1007/s00421-011-1846-y

Rights and permissions

Reprints and permissions

About this article

Cite this article

Agrafiotis, M. Strong ion reserve: a viewpoint on acid base equilibria and buffering. Eur J Appl Physiol 111, 1951–1954 (2011). https://doi.org/10.1007/s00421-010-1803-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00421-010-1803-1

Keywords

Navigation